Fourier transform and the global Gan—Gross—Prasad conjecture
for unitary groups

Wei Zhang*

Abstract

By the relative trace formula approach of Jacquet—Rallis, we prove the global Gan—
Gross—Prasad conjecture for unitary groups under some local restrictions for the automor-
phic representations.
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1 Introduction to Main results

The studies of periods and heights related to automorphic forms and Shimura varieties have
recently received a lot of attention. One pioneering example is the work of Harder-Langlands—
Rapoport ([27]) on the Tate conjecture for Hilbert—Blumenthal modular surfaces. Another
example which motivates the current paper is the Gross—Zagier formula. It concerns the study
of the Neron-Tate heights of Heegner points or CM points: on the modular curve Xo(NV)
by Gross and Zagier ([23]) in 1980s, on Shimura curves by S. Zhang in 1990’s, completed
by Yuan-Zhang—Zhang ([00]) recently (also cf. Kudla-Rapoport—Yang ([!1]), Bruinier-Ono
([6]) etc., in various perspectives). At almost the same time as the Gross—Zagier’s work,
Waldspurger ([56]) discovered a formula that relates certain toric periods to the central value
of L-functions on GLsg, the same type L-function appeared in the Gross—Zagier formula. The
Waldspurger formula and the Gross—Zagier formula are crucial in the study of the arithmetic
of elliptic curves. In 1990’s, Gross and Prasad formulated a conjectural generalization of
Waldspurger’s work to higher rank orthogonal groups ([21], [22]) (later refined by Ichino-
Ikeda [31]). Recently, Gan, Gross and Prasad have generalized the conjectures further to
classical groups ([14]) including unitary groups and symplectic groups. The conjectures are
on the relation between period integrals and certain L-values. The main result of this paper
is to confirm their conjecture for unitary groups under some local restrictions. A subsequent
paper [63] is devoted to the refined conjecture for unitary groups.
In the following we describe the main results of the paper in more details.

Gan—Gross—Prasad conjecture for unitary groups. Let E/F be a quadratic extension
of number fields with adeles denoted by A = Ap and Ag respectively. Let W be a (non-
degenerate) Hermitian space of dimension n. We denote by U(W) the corresponding unitary
group, as an algebraic group over F. Let G] = Res g/FGLy be the restriction of scalar of
GL,, from F to F. Let v be a place of F and F, the completion at v of F. Let m, be an
irreducible admissible representation of U(W)(F,). We recall the local base change map when
a place v is split or the representation is unramified. If a place v of F' is split in E/F, we may
identify G/ (F,) with GL,(F,) x GL,(F,) and identify U(W)(F),) with a subgroup consisting
of elements of the form (g,!¢g~!), g € GL,(F,), where g is the transpose of g. Let p1,po
be the two isomorphisms between U(W)(F,) with GL,(F}) induced by the two projections



from GL,(F,) x GL,(F,) to GL,(F,). We define the local base change BC(m,) to be the
representation pjm, ® pim, of G'(F,) where pfm, is a representation of GL, (F,) obtained by
the isomorphism p;. Note that when v is split, the local base change map is injective. When v
is non-split and U (W) is unramified at v, there is a local base change map at least when m, is
an unramified representation of U(W)(Fy), cf. [141, §8]. Now let m be a cuspidal automorphic
representation of U(W)(A). An automorphic representation II = ®,1II, of G},(A) is called the
weak base change of m if 11, is the local base change of 7, for all but finitely many places v
where 7, is unramified ([25]). We will then denote it by BC(7).

Throughout this article, we will assume the following hypothesis on the base change.

Hypothesis (x): For alln, W and cuspidal automorphic 7, the weak base change BC ()
of ™ exists and satisfies the following local-global compatibility at all split places v: the v-
component of BC () is the local base change of m,.

Remark 1. This hypothesis should follow from the analogous work of Arthur on endoscopic
classification for unitary groups. For quasi-split unitary groups, this has been recently carried
out by Mok ([13]), whose appendix is relevant to our Hypothesis (). A much earlier result of
Harris—Labesse ([25, Theorem 2.2.2]) shows that the hypothesis is valid if (1) 7 have super-
cuspidal components at two split places, and (2) either n is odd or all archimedean places of
F are complex.

Let W, W’ be two Hermitian spaces of dimension n. Then for almost all v, the Hermitian
spaces W, and W) are isomorphic. We fix an isomorphism for almost every v, which induces
an isomorphism between the unitary groups U(W)(F,) and U(W')(F,). We say that two au-
tomorphic representations m, 7’ of U(W)(A) and U(W')(A) respectively are nearly equivalent
if m, ~ 7, for all but finitely many places v of F. Conjecturally, all automorphic representa-
tions in a Vogan’s L-packet ([11, §9, §10]) form precisely a single nearly equivalence class. By
the strong multiplicity one theorem for GL,, if 7, 7" are nearly equivalent, their weak base
changes must be the same.

We recall the notion of (global) distinction following Jacquet. Let G be a reductive group
over F' and H a subgroup. Let Ay(G) be the space of cuspidal automorphic forms on G(A).
We define a period integral

fH : AO(G) - C

P f $(h)dh
(ZenH)(A)H(F)\H(4)

whenever the integral makes sense. Here Zg denotes the F-split torus of the center of G.
Similarly, if x is a character of H(F)\H (A), we define

Crx(®) = f o(h)x(h)dh.

ZanH(A)H(F)\H(A)

For a cuspidal automorphic representation 7 (viewed as a subrepresentation of Ay(G)), we
say that it is (x-, resp.) distinguished by H if the linear functional g (¢g , resp.) is nonzero
when restricted to w. Even if the multiplicity one fails for G, this definition still makes sense
as our 7 is understood as a pair (m,¢) where ¢ is an embedding of 7 into Ay(G).



To state the main result of this paper on the global Gan—Gross—Prasad conjecture ([14,
§24]), we let (W, V) be a fixed pair of (non-degenerate) Hermitian spaces of dimension n and
n+1 respectively, with an embedding W < V. The embedding W < V induces an embedding
of unitary groups ¢ : U(V) — U(W). We denote by Ayy) the image of U(W) under the
diagonal embedding into U(V) x U(W). Let 7 be a cuspidal automorphic representation of
U(V) x U(W) with its weak base change II. We define (cf. [14, §22])

(1.1) L(s,II, R) = L(s, 41 x I1,),

where L(s,II,,41 x II,) is the Rankin—Selberg L-function if we write IT = II,, ® I1,,41.
The main result of this paper is as follows, proved in §2.5 and §2.7.

Theorem 1.1. Assume that Hypothesis (x) holds. Let  be a cuspidal automorphic represen-
tation of U(V') x U(W). Suppose that

(1) Ewvery archimedean place is split in E/F.

(2) There exist two distinct places vi,va (non-archimedean) split in E/F such that my,, Ty,
are supercuspidal.

Then the following are equivalent

(i) The central L-value does not vanish: L(1/2,11, R) # 0.

(i1) There exists Hermitian spaces W' < V' of dimension n and n + 1 respectively, and an
automorphic representation © of U(V') x U(W') nearly equivalent to m, such that 7' is
distinguished by Ay ).

Remark 2. Note that we do not assume that the representation 7’ occurs with multiplicity one
in the space of cuspidal automorphic forms Ay(U (V') x U(W’)) (though this is an expected
property of the L-packet for unitary groups). By 7’ we do mean a subspace of Ay(U (V) x
uw").

The theorem confirms the global conjecture of Gan—Gross—Prasad ([, §24]) for unitary
group under the local restrictions (1) and (2). The two conditions are due to some technical
issues we now briefly describe. Our approach is by a simple version of Jacquet—Rallis relative
trace formulae (shortened as “RTF” in the rest of the paper). The first assumption is due to
the fact that we only prove the existence of smooth transfer for a p-adic field (cf. Remark 3).
The second assumption is due to the fact that we use a “cuspidal” test function at a split place
and use a test function with nice support at another split place (cf. Remark 4). To remove
the second assumption, one needs the fine spectral expansion of the RTF of Jacquet—Rallis,
which seems to be a very difficult problem on its own. Towards this, there has been the recent
work of Ichino and Yamana on the regularization of period integral [32].

Remark 3. In the archimedean case we have some partial result for the existence of smooth
transfer (Theorem 3.14). If we assume the local-global compatibility of weak base change at
a non-split archimedean place, we may replace the first assumption by the following: if v|oo
is non-split, then W,V are positive definite (hence m, is finite dimensional) and

Homy w) () (v, C) # 0.



Remark 4. In Theorem 1.1, we may weaken the second condition to require only that m,, is
supercuspidal and m,, is tempered.

Remark 5. We recall some by-no-means complete history related to this conjecture. In the
lower rank cases, a lot of works have been done on the global Gan—Gross—Prasad conjecture
for orthogonal groups: the work of Waldspurger on SO(2) x SO(3) ([56]), the work of Garrett
([16]), Piatetski-Shapiro—Rallis, Garret—Harris, Harris—-Kudla ([24]), Gross—Kudla ([20]), and
Ichino ([30]) on the case of SO(3) x SO(4) or the so-called Jacquet’s conjecture, the work of
Gan—Ichino on some cases of SO(4) x SO(5) ([13]). For the case of higher rank, Ginzburg—
Jiang-Rallis ([18], [19] etc.) prove one direction of the conjecture for some representations in
both the orthogonal and the unitary cases.

Remark 6. The original local Gross—Prasad conjecture ([21],[22], for the orthogonal case) for
p-adic fields has also been resolved in a series of papers by Waldspurger and Maeglin ([59], [11]
etc.). It is extended to the unitary case ([11]) by Beuzart-Plessis ([7], [¢]). But in our paper we
will not need this. According to this local conjecture of Gan—Gross—Prasad for unitary groups
and the expected multiplicity-one property of 7 in the cuspidal spectrum, such relevant ([11])
pair (W', V') and 7’ in Theorem 1.1 should be unique (if it exists).

Remark 7. Ichino and Ikeda stated a refinement of the Gross-Prasad conjecture in [31] for
the orthogonal case. N. Harris ([20]) extended the refinement to the unitary case of the
Gan—Gross—Prasad conjecture. The approach of trace formula and the major local ingredients
in this paper will be used in a subsequent paper ([63]) to establish the refinement of the
Gan—Gross—Prasad conjecture for unitary groups under certain local conditions.

An application to non-vanishing of central L-values. We have an application to the
existence of non-vanishing twist of Rankin—Selberg L-function. It may be of independent
interest.

Theorem 1.2. Let E/F be a quadratic extension of number fields such that all archimedean
places are split. Let o be a cuspidal automorphic representation of GLy1+1(Ag),n = 1. Assume
that o is a weak base change of an automorphic representation w of some unitary group U (V)
where m, s locally supercuspidal at two split places v of F. Then there exists a cuspidal
automorphic representation T of GL,(Ag) such that the central value of the Rankin—Selberg

L-function does not vanish:
1
L (27 o X T) #* 0

Flicker—Rallis conjecture. Let 7 = ng/r be the quadratic character of F*\A* associated
to the quadratic extension E/F by class field theory. By abuse of notation, we will denote by
71 the quadratic character 7o det (det being the determinant map) of GL, (A).

This is proved in §2.8.

Conjecture 1.3 (Flicker—Rallis, [1 1]). An automorphic cuspidal representation IT on GLy,(AE)
18 a weak base change from a cuspidal automorphic ™ on some unitary group in n-variables if
and only if it is distinguished (ng,p-distinguished, resp.) by GLy, r if n is odd (even, resp.).



Another result of the paper is to confirm one direction of Flicker-Rallis conjecture under
the same local restrictions as in Theorem 1.1. In fact, this result is used in the proof of
Theorem 1.1.

Theorem 1.4. Let w be a cuspidal automorphic representation of U(W)(A) satisfying:
(1) Ewvery archimedean place is split in E/F.

(2) There exist two distinct places vi,va (non-archimedean) split in E/F such that m,, , my,
are supercuspidal.

Then the weak base change BC(w) is (n-, resp.) distinguished by GL, r if n is odd (even,
resp. ).

This is proved in §2.6.

Remark 8. If II is distinguished by GL,, r, then II is conjugate self-dual ([11]). Moreover, the
partial Asai L-function has a pole at s = 1 if and only if II is distinguished by GL,,  ([10],
[12]). In [17], it is further proved that if the central character of II is distinguished, then II is
conjugate self-dual if and only if IT is distinguished (resp., n-distinguished) if n is odd (resp.,
even). !

We briefly describe the contents of each section. In section 2, we prove the main theorems
assuming the existence of smooth transfer. In section 3 we reduce the existence of smooth
transfer on groups to the same question on “Lie algebras” (an infinitesimal version). In section
4, we show the existence of smooth transfer on Lie algebras for a p-adic field .
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Notations and conventions. We list some notations and convention used throughout this
paper. The others will be introduced as we meet them.

Let F' be a number field or a local field, and let £ be a semisimple quadratic F-algebra,
and moreover, a field if F'is a number field.

For a smooth variety X over a local field F' we endow X (F') with the analytic topology. We
denote by €°(X(F')) the space of smooth (locally constant if F' is non-archimedean) functions
with compact support.

Some groups are as follows:

1 As Lapid points out to the author, the work of Ginzburg-Rallis-Soudry on automorphic descent already
shows that for a cuspidal IT of GL,(Ag), its Asai L-function has a pole at s = 1 if and only if II is the base
change from some 7 on a unitary group. In addition, the work of Arthur, extended to unitary groups, should
also prove this. But our proof of Theorem 1.4 is different from theirs and may be of independent interest.



o The general linear case. We will consider the F-algebraic group
(1.2) G’ = Resg/p (GLpy1 x GLy)

and two subgroups: Hj is the diagonal embedding of Resp /FGLy (where GL,, is embed-
ded into GL,, 1 by g — diag[g,1]) and Hj = GL,4+1 r x GL,, r embedded into G’ in the
obvious way. In this paper for an F-algebraic group H, we will denote by Zy the center
of H. We note that Z¢ n Zpy is trivial.

o The unitary case. We will consider a pair of Hermitian spaces over the quadratic exten-
sion F of F: V and a codimension one subspace W. Suppose that W is of dimension 7.
Without loss of generality, we may and do always assume

(1.3) V =W & FEu,

where u has norm one: (u,u) = 1. In particular, the isometric class of V' is determined
by W. We have an obvious embedding of unitary groups U(W) < U(V). Let

(1.4) G=GY =U((V)xUW)

and let A : U(W) — G be the diagonal embedding. Denote by H = Ay (or Hy to
emphasize the dependence on W) the image of A, as a subgroup of G.

For a number field F', let
(1.5) n=mng/F: F\A — {1}

be the quadratic character associated to E/F by class field theory. By abuse of notation we
will also denote by 1 the character of H,(A) defined by n(h) := n(det(h1)) (n(det(hs)), resp.)
if h = (h1,h2) € GLp4+1(A) x GL,(A) and n is odd (even, resp.). Fix a character

(1.6) n : EX\A} — C*
(not necessarily quadratic) such that its restriction

nax =n.

We similarly define the local analogue n,, 7).
Let F' be a field of character zero. For a reductive group H acting on an affine variety X,
we say that a point x € X (F) is:

o H-semisimple if Hx is Zariski closed in X (when F' is a local field, equivalently, H(F)x
is closed in X (F') for the analytic topology, cf. [2, Theorem 2.3.8]).

e H-regular if the stabilizer H, of x has the minimal dimension.

If no confusion, we will simply use the words “semisimple” and “regular”. We say that z is
reqular semisimple if it is regular and semisimple. In this paper, we will be interested in the
following two cases



e X = (G is a reductive group and H = H; x Hs is a product of two reductive subgroups
of G where Hy (Hj, resp.) acts by left (right, resp.) multiplication.

e X =V is a vector space (considered as an affine variety) with an action by a reductive
group H.

For h € H and z € X, we will usually write (especially in an orbital integral)
(1.7) e =h-x

for the h-translation of x.

For later use, we also recall that the categorical quotient of X by H (cf. [2], [15]) consists
of a pair (Y, 7) where Y is an algebraic variety over F' and 7 : X — Y is an H-morphism
with the following universal property: for any pair (Y’, 7’) with an H-morphism 7’ : X — Y,
there exists a unique morphism ¢ : Y — Y’ such that #’ = ¢ o 7. If such a pair exists, then it
is unique up to a canonical isomorphism. When X is affine (in all our cases), the categorical
quotient always exists. Indeed we may construct as follows. Consider the affine variety

X /H := Spec O(X)"
together with the obvious quotient morphism
7 =7xm:X — Spec O(X)H.

Then (X /H, ) is a categorical quotient of X by H. By abuse of notation, we will also let =
denote the induced map X (F') — (X /H)(F) if no confusion arises.
Below we list some other notations.

e M,: n X n-matrices.

e F,, (F™, resp.): the n-dimensional F-vector space of row (column, reps.) vectors.

e c=¢cyr1=(0,..0,1) € F,;1 is a 1 x (n + 1)-row vector and e* € F™*! its transpose.
e For a p-adic local field F, we denote by @w = wp a fixed uniformizer.

e For E/F be a (separable) finite extension, we denote by tr = trg/p : £ — F the trace
map and N = Ng/p : EX — F* the norm map. Let E' (NE*, resp.) be the kernel (the
image, resp.) of the norm map.

2 Relative trace formulae of Jacquet—Rallis

2.1 Orbital integrals

We first introduce the local orbital integrals appearing in the relative trace formulae of
Jacquet—Rallis. We refer to [62, sec. 2] on important properties of orbits (namely, double
cosets). Later on in §3 we will also recall some of them. We now let F' be a local field of char-
acteristic zero. And let F be a quadratic semisimple F-algebra, i.e., F is either a quadratic
field extension of F or F ~ F x F.



The general linear case. We start with the general linear case. If an element v € G'(F)
is Hy x H)-regular semisimple, for simplicity we will say that it is regular semisimple. For a
regular semisimple v € G'(F) and a test function [’ € €°(G'(F)), we define its orbital integral
as:

(2.1) Ot f)i= [ | b b n(ha) i
H{(F) JHy(F)

This depends on the choice of Haar measure. But in this paper, the choice of measure is
not crucial since we will only concern non-vanishing problem. In the following, we always
pre-assume that we have made a choice of a Haar measure on each group.

The integral (2.1) is absolutely convergent, and n-twisted invariant in the following sense

(2.2) O(hi'vha, f') = n(ha)O(v, ),  hi € H{(A), hy € H)(A).

We may simplify the orbital integral as follows. Identify Hj\G’ with Resp/pGLj11. Let
Sn+1 be the subvariety of Resp/pGLy,41 defined by the equation ss = 1 where s denotes
the entry-wise Galois conjugation of s € Resg/pGL;+1. By Hilbert Satz-90, we have an
isomorphism of two affine varieties

Resg/pGLyt1/GLny1,p =~ Spyt,
induced by the following morphism v between two F-varieties:

(2.3) v:Resp/pGLpt1 — Snit

(2.4) g—97 "

Moreover, we have a homeomorphism on the level of F-points:
(2'5) GLnJrl(E)/GLnJrl(F) = SnJrl(F)'

We may integrate f' over Hj(F) to get a function on Resp/pGLy11(F):
)= [ G 1)dh, o e ResppGLyn(P).
Hi(F)

We first assume that n is odd. Then the character n on ~H§ is indeed only nontrivial on
the component GL,,1; . We may introduce a function f’ on S,y1(F) as follows: when
v(xz) = s € Spt1(F), we define

f'(s) = f F(@g)n (zg)dy.
GLn+1(F)

Then f € €*(Sp+1(F)) and all functions in €2 (S, 1(F)) arise this way. Now it is easy to
see that for v = (y1,72) € G'(F) = GLp4+1(E) x GL,(E):

(2.6) O(v, f') = n'(det(m175 1)) LL - F(htshyn(h)dh, s =v(nys ).



If n is even, we simply define in the above

P Flagds v -
GLn+1(F)
We then have for v = (v1,72)

(2.7) OWJW=LLmﬂM*mWMM7S=M%EW

An element v = (y1,72) € G'(F) is H] x H)-regular semisimple if and only if s =
v(7175 1)) € Spy1(F) is GL, p-regular semisimple. We also recall that, by [51, §6], an ele-
ment s € Sy41(F) is GL,, p-regular semisimple if and only if the following discriminant does
not vanish

(2.8) A(s) := det(65i+je*)Z'yj:O’L.”’n #0,

where e = (0,...0,1) is a row vector and e* its transpose.

To deal with the center of G’, we will also need to consider the action of H := Z H| x H,
on G'. Though the categorical quotient of G’ by Zg H| x H) exists, we are not sure how to
explicitely write down a set of generators of invariant regular functions nor how to determine
when ~ is Zg H| x H)-regular semisimple. But we may give an explicit Zariski open subset
consisting of Zg H| x H)-regular semisimple elements. It suffices to work with the space Sy 41.
Then we have the induced action of Zg/ x GL,, r on Sp41:

e h e GL, r acts by the conjugation,

o 2= (21,2) € Zg ~ (E*)? acts by Galois-conjugate conjugation by z2_121:

zos = (zy'2)s(z] ' 7).

The two subgroups Zgr, ., © Zor and {((1,22),22) € Zg' x GLy rl22 € ZaL, p} clearly act
trivially on S,,11. We let Zy denote their product. We may write

A b
s = <C d) € Sn+1(F),

where A e M, (E),be My, 1(E),ce My ,(E),de E. Then we have the following Z¢ x GL,, -
invariant polynomials on Sy, 1:

(2.9) Ng/p(tr(A)), Ng/pd.

We say that s is Z-reqular semisimple if s is GL,-regular semisimple and the above two
invariants are invertible in E. When E is a field, this is equivalent to:

tr(A) #0, d#0, A(s)#0.

Otherwise we understand “# 0”7 as “e E*” in these inequalities. The Z-regular semisimple
locus, denoted by Z, clearly forms a Zariski open dense subset in S;,41.
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Lemma 2.1. If s is Z-regular semisimple, the stabilizer of s is precisely Zy and its Zq X
GL,, p-orbit is closed. In particular, a Z-reqular semisimple element is Zg: x GLj, p-regular
semisimple.

Proof. Suppose that (z,h)os =s. As tr(A4) # 0,d # 0, up to modification by elements in Z,
we may assume that z = 1. Then the first assertion follows from the fact that the stabilizer
of s is trivial for the GL,-action on S,+1 when A(s) # 0. When tr(A) # 0,d # 0, besides
Ng/p(tr(A)), Ng/rd, the following are also Zgr x GL;, p-invariant:

tr At A cAlb
(tr(A)""  (tr(A))FHd’

l<i<n0<j<n-—lL

Then we claim that two Z-reglar semisimple s, s’ are in the same Zg x GL,, p-orbit if and
only if they have the same invariants (listed above). One direction is obvious. For the other
direction, we now assume that s, s’ are Z-reglar semisimple and have the same invariants. In
particular, the values of Ng/p(tr(A)), Ng/pd are the same. Replacing s’ by zs’ for a suitable
z € Zgr, we may assume that s and s have the same tr(A) and d. Then s, s’ have the same
values of tr A’ A,1 <i < n and cA’b,0 < j <n — 1. Then by [62, §2], s and s’ are conjugate
by GL,, r since they are also GL,, p-regular semisimple. This proves the claim. Therefore, the
Zgr x GLy, p-orbit of s consists of s € Sy,41 such that for a fixed tuple (o, 3, o, B;)

Ng/p(tr(A)) = a,Ng/p = 5,

and 4 A7
tr A* c
% (b (A))7 B; (te(A)) 7 1d <i<n0<j<n

The second set of conditions can be rewritten as
tr A" A — ay(tr(A))" = 0, cATb — B;(tr(A))Td = 0,
for 1 <i<n,0<j<n-—1. This shows that the Zg x GL,, p-orbit of s is Zariski closed. []

Let X’ be a character of the center Z¢/(F) that is trivial on Zp, (F). If an element y € G'(F)
is Z-regqular semisimple, we define the y’-orbital integral of f' € €°(G'(F)) as:

(210)  Oy(v, f) = f f f £ (07 2 k)X (2)n(ho)dzdhadhs.
H{(F) 2y, (P)\Hy(F) 20 ()

The integral is absolutely convergent.
The unitary case. We now consider the unitary case. Similarly, we will simply use the

term “regular semisimple” relative to the action of H x H on G = U(V) x U(W). For a
regular semisimple § € G(F) and f € €.°(G(F')), we define its orbital integral

(2.11) 00, f) = J f(z=1oy)dxdy.

H(F)x H(F)

11



The integral is absolutely convergent. Similar to the general linear case, we may simplify the
orbital integral O(4, f). We introduce a new function on U(V')(F):

(2.12) F(g) = f f(g. )R)dh,  ge UWV)(F).
UW)(F)
Then for § = (dp41,0n) € G(F), we may rewrite (2.11) as
(2.13) 005, f) = f ™ Gner; ).
(W)(F)

We thus have the action of U(W) on U(V') by conjugation. An element 6 = (6,,+1,0,) € G(F)
is H x H-regular semisimple if and only if 8,116, € U(V)(F) is U(W)-regular semisimple for
the conjugation action. We recall that, by [02, §2], an element 6 € U(V)(F) is U(W)-regular
semisimple if and only if the vectors 6’u € V, i = 0,1, ...,n, form an E-basis of V, where u is
any non-zero vector in the line W+ < V (cf. (1.3)). To deal with the center, we also need to
consider the action of the center Zg. Similar to the general linear case, we define the notion
of Z-regular semisimple in terms the invariants in (2.9) where we view § € U(V') as an element
in GL(V). Then Lemma 2.1 easily extends to the unitary case. Let x be a character of the
center Zg(F'). If an element § € G(F) is Z-regular semisimple, we define the y-orbital integral
as:

(2.14) Oy (6, f) := f J f(z720y)x(2) dz dx dy.
H(F)xH(F) JZa(F)

The integral is absolutely convergent.

2.2 RTF on the general linear group

Now we recall the construction of Jacquet—Rallis’ RTF on the general linear side ([39]). Let
E/F be a quadratic extension of number fields. Fix a Haar measure on Z¢ (A), H/(A) (i = 1,2)
etc. and the counting measure on Zg (F), H/(F) (i = 1,2) etc..

For f' € €°(G'(A)), we define a kernel function

Kp(zy)= >, fla ')
~eG/(F)

For a character ' of Zg/(F)\Z¢(A), we define the x’-part of the kernel function

Ky (a,y) = L S Fa ) (e)de.

&' (FNZer(A) yeq(F)
We then consider a distribution on G'(A):

(2.15) 1) = K po(h1, ha)n(ha)dhidhs.

in(F)\Hi(A) JHé(F)\lLfé(A)

12



Similarly, for a character X’ of Zg/(F')\Z¢r(A) that is trivial on Zp; (A), we define the x'-part
of the distribution

(2.16) [X/(f/) = Kf'7x(h17 hz)n(hg)dhldhg.

JHi(F)\Hi (4) fZHé (A)H5(F)\Hy(A)

For the convergence of the integral, we will consider a subset of test functions f’. We say
that a function f’ € € (G'(A)) is nice with respect to x’ if it is decomposable f' = ®, f, and
satisfies:

e For at least one place v1, the test function f;, € € °(G'(F,,)) is essentially a matrix
coefficient of a supercuspidal representation with respect to x;, . This means that the
function on G(Fy,)

£ (g :=f £ (920, (2)dz
@ [ )

is a matrix coefficient of a supercuspidal representation of G(F,,). In particular, we
require that v; is non-archimedean.

e For at least one place v # vy, the test function f;, is supported on the locus of Z-regular
semisimple elements of G'(F,,). The place vg is not required to be non-archimedean.

Lemma 2.2. Let X' be a (unitary) character of Zg/(F)\Zg/(A) that is trivial on Zp; (A).
Suppose that f' = ®, f] is nice with respect to x'.

o As a function on H{(A) x H5(A), K (hi,he) is compactly supported modulo H{(F) x
HL(F). In particular, the integral I(f’) converges absolutely.

o As a function on H{(A) x Hy(A), K, (h1,h2) is compactly supported modulo H{(F') x
Hy(F)Zpy (A). In particular, the integral I/(f') converges absolutely.

Proof. The kernel function Ky can be written as

Z Z F(h 1 M y2ha),

YEH (F)\G'(F)/H(F) (v1,72)€H1 (F)x Hy(F)

where the outer sum is over a complete set of representatives 7 of regular semisimple Hj(F') x
H}(F)-orbits. First we claim that in outer sum only finite many terms have non-zero con-
tribution. Let Q@ < G’(A) be the support of f’. Note that the invariants of G’(A) defines a
continuous map from G’(A) to X(A) where X is the categorical quotient of G’ by Hy x Hj.
So the image of the compact set Q2 will be a compact set in X (A). On the other hand the
image of h 'y 'yy2he is in the discrete set X (F). Moreover for a fixed z € X (F) there is at
most one H{(F) x H,(F) double coset with given invariants. This shows the outer sum has
only finite many non-zero terms.

It remains to show that for a fixed vy € G'(F), the function on H{(A) x H,(A) defined
by (hi,hs) — f'(h{'y0h2) has compact support. Consider the continuous map Hj(A) x
H)(A) — G'(A) given by (h1,ha) — hi'yoha. When v is regular semisimple, this defines
an homeomorphism onto a closed subset of G’(A). This implies the desired compactness and
completes the proof the first assertion. The second one is similarly proved using the Z-regular
semi-simplicity. O

13



The last lemma allows us to decompose the distribution I(f’) in (2.15) into a finite sum
of orbital integrals

I(f) =>.00v. f),
B!
where the sum is over regular semisimple v € H{(F)\G'(F')/H4(F') and
(2.17) O, f') = J J f'(hy 'yh2)n(he) dhy dhs.
1(A) JH;(A)

If f/ = ®,f] is decomposable, we may decompose the orbital integral as a product of local
orbital integrals:

O, f) =100 ),

where O(7, f;,) is defined in (2.1). Similarly, we have a decomposition for the x’-part I,/(f’)
in (2.16)

Lo(f) =Y. 0xp (1, 1),
Y

where the sum is over regular semisimple v € Zg/(F)H{(F)\G'(F)/H5(F).
For a cuspidal automorphic representation II of G’(A) whose central character is trivial on
Zy(A), we define a (global) spherical character

2.18 In(f') = () (x)d da |,
(2.18) n(f) = )] ) <JH1(F)\H1(A) (f)o(z) 3:> JZHé(A)Hé(F)\Hé(A) P(z)dx

¢eB(I1

where the sum is over an orthonormal basis B(II) of II.
We are now ready to state a simple RTF for nice test functions on G’(A):

Theorem 2.3. Let X' be a (unitary) character of Zg/(F)\Ze(A) that is trivial on Zy (A).
If f' e €F(G'(A)) is nice with respect to x', then we have an equality

Z OX'(f/) = ZIH(f/)v
¥ I
where the sum on the left hand side runs over all Z-reqular semisimple

v € Hy(F\G'(F)/Za(F)Hy(F)

and the sum on the right hand side runs over all cuspidal automorphic representations 11 of
G'(A) with central character x'.

Proof. Tt suffices to treat the spectral side. Let p be the right translation of G’(A) on L?(G’, x')
(cf. [50] for this notation). Since f; is essentially a matrix coefficient of a super-cuspidal
representation, by [50, Proposition 1.1], p(f) acts by zero on the orthogonal complement of
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the cuspidal part L%(G' ,X'). We obtain that the kernel function is an absolute convergent
sum

(2.19) Kpoo(z,y) = Y p(f)9(@)6(y),
$

where the sum runs over an orthonormal basis of the cuspidal part L%(G’ ,X'). We may further
assume that the ¢’s are all in Ag(G’, x’). This yields an absolutely convergent sum

Lo(f') = ) In(f"),
Il
where IT runs over automorphic cuspidal representations of G'(A) with central character x'. [

2.3 RTF on unitary groups

We now recall the RTF of Jacquet—Rallis in the unitary case. For f € €°(G(A)) we consider
a kernel function

Kp(z,y) = > fla '),

veG(F)
and a distribution

J(f) := Ky(z,y)dzdy.

JH(F)\H(A) JH(F)\H(A)

Fix a (necessarily unitary) character x = (Xn+1, Xn) : Za(F)\Za(A) — C*. We introduce the
x-part of the kernel function

Ko () = j K (2, y)x(2)dz = f K= y)(2)dz,
Zg(F)\Zg(A) Zg(F)\Za(A)
and a distribution
= | | K (2,9 dody.
H(F)\H(A) JH(F)\H(A)

Note that the center Zg is an anisotropic torus and its intersection with H is trivial.

Similar to the general linear case, we will consider a simple RTF for a subset of test
functions f € €.°(G(A)). We say that a function f € €.°(G(A)) is nice with respect to x if
f = ®, f, satisfies

e For at least one place v1, the test function f,, is essentially a matrix coefficient of a
supercuspidal representation with respect to x,,. This means that the function

fUl,le (g) = JZ (F )fm (gZ)le (Z)dz

is a matrix coefficient of a supercuspidal representation of G(F),,). In particular, we
require that v; is non-archimedean.
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e For at least one place va # vy, the test function f,, is supported on the locus of Z-regular
semisimple elements of G(F,,). The place vy is not required to be non-archimedean.

For a cuspidal automorphic representation m of G(A), we define a (global) spherical char-
acter as a distribution on G(A):

(2.20) T(f) = D | UH(F)\H(A) 7r(f)¢($)d$> ( JH(F)\H(A) <Z>(:c)da:> ;

PeB(m

where the sum is over an orthonormal basis B(m) of 7.
We now ready to state a simple RTF for nice test functions on G(A):

Theorem 2.4. Let x be a (unitary) character of Zg(F)\Zg(A). If f is a nice test function
with respect to x, then Jy(f) is equal to

D040, £) =Y T (),
o T

where the sum in left hand side runs over all reqular simisimple orbits
o€ HIF\G(F)/Za(F)H(F),

and the right hand side runs over all cuspidal automorphic representations w with central
character x.

Here in the right hand side, by a m we mean a sub-representation of the space of cuspidal
automorphic forms. So, a priori, two such representations may be isomorphic (as we don’t
know yet the multiplicity one for such a 7, which is expected to hold by the Langlands—Arthut
classification).

Proof. The proof follows the same line as that of Theorem 2.3 in the general linear case. [

2.4 Comparison: fundamental lemma and transfer

Smooth transfer. We first recall the matching of orbits without proof. The proof can
be found [51] and [62, §2.1]. Now the field F' is either a number field or a local field of
characteristic zero. We will view both S, 11 and U(V') as closed subvarieties of Resg/pGLyp+1.
In the case of U(V), this depends on a choice of an E-basis of V. Even though such choice is
not unique, the following notion is independent of the choice: we say that 6 € U(V)(F) and
s € Sp41(F) match if s and ¢ (both considered as elements in GL,41(E)) are conjugate by an
element in GL,,(E). Then it is proved in [62, §2] that this defines a natural bijection between
the set of regular semisimple orbits of Sy,+1(F) and the disjoint union of regular semisimple
orbits of U(V) where V =W @ Fu (with (u,u) = 1) and W runs over all (isometric classes
of) Hermitian spaces over E.

Now let E/F be number fields. To state the matching of test functions, we need to
introduce a “transfer factor”: it is a compatible family of functions {2,}, indexed by all
places v of F, where €, is defined on the regular semisimple locus of S,+1(F),), and they
satisfy:
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o If s€5,1(F) is regular semisimple, then we have a product formula
[](s) = 1.
v

e For any h € GL,(F,) and s € S,,41(F,), we have Q,(h~'sh) = n(h)Q,(s).

The transfer factor is not unique. But we may construct one as follows. We have fixed a
character ' : EX\Aj — C* (not necessarily quadratic) such that its restriction 7/[yx = 7.
We define

(2.21) Qy(s) := 7! (det(s) (/2 det (e, es, ..., es™)).

Here e = €511 = (0,...,0,1) and (e, es, ...,es™) is the (n + 1) x (n + 1)-matrix whose i-th row
is es’1. It is easy to verify that such a family {{,}, defines a transfer factor.

We also extend this to a transfer factor on G’, by which we mean a compatible family of
functions (to abuse notation) {£2,}, on the regular semisimple locus of G’(F},), indexed by all
places v of F', such that

e If v € G'(F) is regular semisimple, then we have a product formula

HQU(’Y) =1

e For any h; € H/(F,) and v € G'(F),), we have Q,(h1vh2) = 1n(h2)Qy (7).

We may construct it as follows. Write v = (y1,72) € G'(F,) and s = v(y17, 1) € Spy1(F,). If
n is odd, we set:

(2.22) Qu(7) = 1, (det(y175 1))l (det(s) "D/ 2 det (e, es, ..., es™)),
and if n is even, we set:
(2.23) Qu(7) := 1, (det(s) "2 det(e, es, ..., es™)).

For a place v of F', we consider f’ € €°(Sn+1(F),)) and the tuple (fw)w, fw € €°(U(V)(Fy))
indexed by the set of all (isometric classes of) Hermitian spaces W over E, = E ® F,,, where
we set V = W @ Eyu with (u,u) = 1 as in (1.3). In particular, V' is determined by W. We
say that f’ € €(S,(F,)) and the tuple (fw )w are (smooth) transfer of each other if

Qu(s)0(s, f) = O, fw),

whenever a regular semisimple s € S,,11(F,) matches a 6 € U(V)(F,).

Similarly we extend the definition to (smooth) transfer between elements in € (G’'(F,))
and those in €*(GW (F,)), where we use G" as in (1.4) to indicate the dependence on W.
It is then obvious that the existence of the two transfers are equivalent. Similarly, we may
extend the definition of (smooth) transfer to test functions on G’(A) and G (A).
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For a split place v, the existence of transfer is almost trivial. To see this, we may directly
work with smooth transfer on G’(F,) and G (F,). We may identify GL,(E®F,) = GL,(F,) x
GL,(F,) and write the function f;, = f, ;1 ® f, 5 € €.°(GL,(E ® F,)). There is only one
isometric class of Hermitian space W for E,/F,. We identify the unitary group U(W)(F,) ~
GL,(F,) and let f,, € €.°(U(W)(Fy)) = €.°(GLyn(Fy)). Similarly we have f]; for GLy+1(F,)
etc..

Proposition 2.5. If v is split in E/F, then the smooth transfer exists. In fact we may take
the convolution f; = fi, * f;} where i =n,n+1 and f;y'(9) = f£72(g*1)

Proof. In this case the quadratic character n, is trivial. For f’ = f; ; ® f,, the orbital
integral O(v, f') can be computed in two steps: first we integrate over Hy(F),) then over the
rest. Define

= | @@= f ), il

Then obviously we have the orbital integral for v = (vp11, V) € G'(Fy) and v = (75,1,%i2) €
GLi(F,) x GLi(F,), i = n,n + 1:

O(v,f) = J J Frt @107 41.99) Fr (27,17, by) dacdy.
GLn (Fy) JGLA (F)
Now the lemma follows easily. O

Now use E/F to denote a local (genuine) quadratic field extension. We write €2 for the
local transfer factor defined by (2.22) and (2.22). The main local result of this paper is the
following;:

Theorem 2.6. If E/F is non-archimedean, then the smooth transfer exists.

The proof will occupy section 3 and 4.
Let x be a character of Z;(F') and define the character x’ of Zg/(F) to be the base change
of x.

Corollary 2.7. If f' and fw match, then the x-orbital integrals also match, i.e.:
Ox (6, fw) = Q(7)Oy (v, f)
whenever v and § match.

Proof. 1t suffices to verify that the orbital integrals are compatible with multiplication by

central elements in the following sense: consider z € E* x E* identified with the center

of G'(F) in the obvious way. We denote by z the Galois conjugate coordinate-wise. Then

2/Z € E' x E' which can be identified with the center of G(F) in the obvious way. Assume

that § and v match. Then so do z7y and z/zd. We have by assumption that f’ and fy match:
Q(27)0(27, ') = O(2/26, fw)

for all z. It is an easy computation to show that our definition of transfer factors satisfy

Q(zy) = Q(v).
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Fundamental lemma. We will need the fundamental lemma for units in the spherical
Hecke algebras. Let E//F be an unramifeid quadratic extension (non-archimedean). There are
precisely two isometric classes of Hermitian space W: one with a self-dual lattice is denoted
by Wy and the other Wj. For W, the Hermitian space V = W @ Fu with (u,u) = 1 also has a
self-dual lattice. We denote by K the subgroup of G'0 which is the stubblier of the self-dual
lattice. Denote by K’ the maximal subgroup G'(Or) of G'(F). Denote by 1x and 1g/ the
corresponding characteristic function. Choose measures on G0 (F), G’(F) so that the volume
of K, K’ are all equal to one.

Theorem 2.8. There is a constant c¢(n) depending only on n such that the fundamental lemma
of Jacquet—Rallis holds for all quadratic extension E/F with residue character larger than c(n);
namely, the function 1x € €°(G'(F)) and the pair fw, = 1k, fw, = 0 are transfer of each
other.

Proof. This is proved in [61] by Z. Yun in the positive characteristic case, extended to char-
acteristic zero by J. Gordon in the appendix to [61]. O

An automorphic-Cebotarev-density theorem. We will need a theorem of automorphic-
Cebotarev-density type proved by Ramakrishnan. It will allow us to separate (cuspidal) spec-
trums without using the fundamental lemma for the full spherical Hecke algebras at non-split
places. It is stronger than the strong multiplicity one theorem for GL,,.

Theorem 2.9. Let E/F be a quadratic extension. Two cuspidal automorphic representations
Iy, My of Resg pGLy(A) are isomorphic if and only if 11y, ~ Tla,, for almost all places v of
F that are split in E/F.

The proof can be found in [52].

The trace formula identity. We first have the following coarse form of a trace formula
identity.

Proposition 2.10. Fiz a character x of Zg(F)\Za(A) and let X' be its base change. Fix
a split place vy and a supercuspidal representation my,, of G(Fy,) with central character x.,.
Suppose that

o [ and (fw)w are nice test functions and are smooth transfer of each other.

o LetIly, be the local base change of my,. Then f is essentially a matriz coefficient of IL,,
and is related to fw., as prescribed by Proposition 2.5 (in particular, fy ., is essentially
a matriz coefficient of my, ).

Fiz a representation ®,m> where the product is over almost all split places v and each 79 is
irreducible unramified. Then we have

S () = 313 e (i),
I

W mw

where the sums run over all automorphic representations I of G'(A) and my of GV (A) with
central characters X', x respectively such that
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o Tw, ~m) for almost all split v.
® Ty, @S the fized supercuspidal representation m,,.

o Il = BC(mw) is a weak base change of my, and IL,, is the local base change of my,. In
particular 11 is cuspidal and the left hand side contains at most one term.

Proof. We may assume that all test functions are decomposable. Let S be a finite set of places
such that

e all Hermitian spaces W with fy # 0 are unramified outside S.

e for any v outside S, f; and fy, are units of the spherical Hecke algebras (in particular,
v is non-archimedean and unramified in F/F)

So we may identify G (A®) (and write it as G(A®)) for all such W appeared in the sum.
Now we enlarge S so that for all non-split v outside S, the fundamental lemma for units holds
(Theorem 2.8). The fundamental lemma for the entire spherical Hecke algebra holds at all
non-archimedean split places. Consider the spherical Hecke algebra H(G'(A%)/K'S) where
K'S = HU¢S K! is the usual maximal compact subgroup of G’(A”), and the counterpart

H(G(AS)JKS) for unitary groups. For any f5 € #(G'(A%)/K'S) and f° € H(G(AS)/KS)
such that at a non-split v ¢ S, f,, f, are the units, we have a trace formula identity:

I(fs® %) = > T (fws ® f7).
w

Again all these test functions are nice so we may apply the simple trace formulae of Theorem
2.3 and 2.4:

DIu(fs@ ) =303 Try (fis ® f5).

11 W mw
Here all II, myy are cuspidal automorphic representations whose component at vy are the
given ones. Let Aqs ()\Wiqv , resp.) be the linear functional of the spherical Hecke algebras

H(G'(AS)JK'S) (H(G(A%)JK?®), resp.). Then we observe that

In(f6® £5) = Aps (f ) (£ ® 106)

and similarly for Jr, (fiv,s ® f7). Note that we are only allowed to take the unit elements
in the spherical Hecke algebras at almost all non-split spaces. Therefore we can view both
sides as linear functionals on the spherical Hecke algebra H (G’ (A%5P1t) J K':sPlit) wwhere “split”
indicate we only consider the product over all split places outside S. These linear functionals
are linearly independent. In particular, for the fixed ®,70, we may have an equality as claimed
in the theorem. Since such II’s are cuspidal, there exists at most one II by Theorem 2.9 .

O

Now we come to the trace formula identity which will allow us to deduce the main theorems
in the introduction.
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Proposition 2.11. Let E/F be a quadratic extension such that all archimedean places v|oo are
split. Fiz a Hermitian space Wy and define Vg, the group G = G0 by (1.3) and (1.4). Let T be
a cuspidal automorphic representation of G such that for a split place vy, m,, is supercuspidal.
Consider decomposable nice functions f' and (fjy)w satisfying the same conditions as in
Proposition 2.10. Then we have a trace formula identity:

In(f') = >, D I (fw),

W mw

where 11 = BC(w) and the sum in the right hand side runs over all W and all my nearly
equivalent to .

Proof. Apply Proposition 2.10 to 70 = m, for almost all split v. Then in the sum of the right
hand side there, all 7y have the same weak base change II. Note that the local base change
map are injective for split places and for unramified representations at non-split unramified
places. By our Hypothesis (%), this implies that all my are in the same nearly equivalence

class.
O

A non-vanishing result. To see that the second condition in Theorem 1.1 on the niceness
of a test function does not lose generality in some sense, at least for tempered representations
at v, we will need some “regularity” result for the distribution J; defined by (2.20). By
the multiplicity one result of [3] and [55], we have dim Homp, (7,,C) < 1. We may fix
an appropriate choice of generator g, € Homp, (m,,C) (£g, = 0 if the space is zero) and
decompose

(2.24) lr = cx | [ ¢n,,

where ¢, is a constant depending on the cuspidal automorphic representation 7 (and its
realization in Ag(G)). This gives a decomposition of the spherical character as a product of
local spherical characters

(2.25) Te(f) = lex* [ | Two (fo),

where the spherical character is defined as

Iy (fo) = Z Cr, (mo(fo)Pv)l, (Pu)-

PuEB(y)

Note that J;, is a distribution of positive type, namely, for all f, € €°(G(F})),

Ty (fo f:) =0, f:(g) = flg™h).

To see the positivity, we notice that

I, (fo = f3) = Z Ca, (o (fo) pu)la, (o (fo)du) = 0.

PveEB(my)

We will also say that a function of the form f, * f¥ is of positive type.
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Proposition 2.12. Let 7, be a tempered representation of G(F,). Then there exists function
fo € €F(G(Fy)) supported in the Z-reqular semisimple locus such that

I, (fo) # 0.

The proof is given in the appendix A to this paper (Theorem A.2). Equivalently, the
result can be stated as follows: the support of the spherical character J,, (as a distribution
on G(F,)) is not contained in the complement of Z-regular semisimple locus.

2.5 Proof of Theorem 1.1: (i) = (i)

Proposition 2.13. Let E/F be a quadratic extension of number fields such that all archimedean
places v|oo are split. Let W <V and H < G be defined by (1.3) and (1.4). Let 7 be a cuspidal
automorphic representation of G such that for a split place vi, m,, is supercuspidal and for a
split place vo # v1, Ty, is tempered. Denote by I = BC () its weak base change.

If © is distinguished by H, then L(1/2,II,R) # 0 and I is n-distinguished by H) =
GLyp41,F X GLy p. In particular, in Theorem 1.1, (ii) implies (i).

Proof. We apply Proposition 2.11. It suffices to show that there exist f’ as in Proposition
2.11 such that
In(f") # 0.

We will first choose an appropriate f := fir and then choose f’ to be a transfer of the tuple
(fw,0...,0) where for all hermitan space other than W we choose the zero functions. We
choose f’ satisfying the conditions of Proposition 2.11 . Then the trace formula identity from
Proposition 2.11 is reduced to

In(f') = > Tnw (fw).

Note that for all my, they have the same local component at v1, ve by our Hypothesis (*) on
the local-global compatibility for weak base change at split places.

We choose f = fiy = ®,fy» as follows. By the assumption on the distinction of 7, we have
cx # 01in (2.24) and we may choose a function g = ®,g, of positive type on G" (A) such that
Jr, (gv) > 0 for all v. We may assume that at vy, g,, is essentially a matrix coefficient of m,, .
This is clearly possible. Then we have

Jr(g) = ’CW‘QHJM(%) >0

and for all my nearly equivalent to 7:
Iy (9) = 0.

Now we choose f, = g, for every place v other than vy. We choose f,, to be supported in
the Z-regular semisimple locus. By Proposition 2.12, we may choose an f,, such that

Try(fur) # 0.
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For this choice of f, the trace identity is reduced to

In(f') = Jn, (fur) (Z |cm|2Jﬂ;;2><f<v2>>)

where the superscript indicates the away from wve-part: Jﬂ(m = HU#}Z Jrw.,- In the sum,
w

every term is non-negative as we choose f(¥2) = ¢(¥2) of positive type. And at least one of
these terms (the one from 7) is non-zero. Therefore we conclude that for this choice the right
hand side above is non-zero. This shows that Irj(f’) # 0 and completes the proof. Note that
the proof should be much easier if we assume the multiplicity one for my in the cuspidal
spectrum of the unitary group. O

2.6 Proof of Theorem 1.4
A key ingredient is the following Burger—Sarnark type principle a la Prasad [17].

Proposition 2.14. Let V be a Hermitian space of dimension n+ 1 and W a nondegenerate
subspace of codimension one. Let m be a cuspidal automorphic representation of U(V)(A).
Fiz a finite (non-empty) set S of places and an irreducible representation o, of U(W)(Fy) for
each v e S such that

o Ifve S is archemedean, both W and V are positive definite at v.

e Ifve S is non-archimedean and split, 00 is induced from a representation of Z, K, where
K, is a compact open subgroup and Z, is the center of U(W)(Fy).

e Ifve S is either archimedean or non-split, the contragredient of o) appears as a quotient
of m, restricted to U(W)(Fy).

Then there exists a cuspidal automorphic representation o of U(W)(A) such that
e g, =00 forallvesS.
o the linear form Ly on ™ ® o is non-zero.

Heuristically, this allows to pair m with a o with prescribed local components at S such
that ™ ® o is distinguished.

We first show the following variant of [17, Lemma 1]|. Note that the only difference lies in
the assumption on the center. The assumption on the center seems to be indispensable. For
example, it seems to be difficult to prove the same result if G = GL,,1 and H = GL,,.

Lemma 2.15. Suppose that we are in the following situation:
e F'is a number field.
e (G is a reductive algebraic group defined over F, and H is a reductive subgroup of G.
e S is a finite set of places of F such that: if v € S is archimedean, then G(F,) is compact.
Denote Gg = [ [,eg G(Fy) and Hg = [[,cq H(Fy).
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o The center Z of H is anisotropic over F.

Let 7 be a cuspidal automorphic representation of G(A). Let ®yesity be an irreducible repre-
sentation of Hg such that

(1) For each v e S, u, appears as a quotient of m, restricted to H(F,).

(2) for each non-archimedean v € S, p, is supercuspidal representations of H(F,), and it is
an induced representation fi, = IndIZ{;’Kv vy from a representation v, of a subgroup Z,K,,
where K, is an open compact subgroup of H,.

Then there is an automorphic representation p' = [, pi, of H(A) and functions fi € m, fo € 1/
such that

(i)
J () folh)dh # 0,
H(F)\H(A)

and

(it) If v e S is archimedean p, = p,; if v € S is non-archimedean, i, = Ind?:KUV{) is induced
/ /
from v, where V) |k, = Vy|K, -

Proof. The proof is a variant of [17, Lemma 1|. If v € S is archimedean, let K, = H(F,)
and v, = . It is compact by assumption. We consider the restriction of m, to K, for each
v € S. By the assumption and Frobenius reciprocity, v,|x, is a quotient representation of
Tu|Kk,. Since K, is compact, vk, is also a sub-representation for v € S. This means that
we may find a function f on G(A) whose Kg = [[,.q Kv translates span a space which is
isomorphic to ®yesty|k, as Kg-modules. By the same argument as in [17, Lemma 1] (using
weak approximation), we may assume that such f has non-zero restriction (denoted by f ) to
H(F)\H(A). Now note that Z(F)\Z(A) is compact. For a character x of Z(F)\Z(A) we may
define

Fx(h) := flzh)x™(2)dz,  he H(F)\H(A).

‘[Z(F NZ(A)
As Zg and Kg commute, cach of f and f, generates a space of functions on H(F)\H(A)
which is isomorphic to ®uesty|k, as Kg-modules. There must exist some x such that it is
non-zero. For such a Y, it is necessarily true that x,|z,~x, = wWu,|z,~k, Where w,, is the
central character of v,. In particular, we may replace u, = Ind?:Kv vy by pl, = Indgj’KUV{]
where v, is an irreducible representation of Z, K, with central character x, and v} |k, = v|Kk, -
Certainly such p is still supercuspidal if v € S is non-archimedean. If v € S is archimedean,
we have u = p,. Now we consider the space generated by fx under ZgKg translations. This
space is certainly isomorphic to [ [, g v, as ZgKg-modules. The rest of the proof is the same
as in [17, Lemma 1], namely applying [17, Lemma 2] to the space of Hg-translations of fx

which is isomorphic to ®U€51nd§:KU vl as Hg-modules. O

We now return to prove Proposition 2.14 .
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Proof. We apply Lemma 2.15 above to H = U(W),G = U(V). Then the center of H is
anisotropic. If v € S is split non-archimedean, it is always true that u, appears as a quotient
of m, (the local conjecture in [14] for the general linear group is known to hold for generic
representations). The proposition then follows immediately. O

Remark 9. Noting that any supercuspidal representation of GL,,(F,) for a non-archimedean
local field F}, is induced from an irreducible representation of an open subgroup that is compact
modulo center. But an open subgroup of GL,(F') compact modulo center is not necessarily
of the form K,Z,. As pointed out by Prasad to the author, it may be possible to choose an
arbitrary supercuspidal u, if one suitably extends the result in Lemma 2.15.

Now we come to the proof of Theorem 1.4.

Proof. We show this by induction on the dimension n = dim W of W. If n is equal to one, then
the theorem is obvious. Now assume that for all dimension at most n Hermitian spaces, the
statement holds. Let V be a n + 1-dimensional Hermitian space and W is a codimension one
subspace. And let 7 be a cuspidal automorphic representation such that m,, is supercuspidal
for a split place v;. By [5], there exists a supercuspidal representation 021 that verifies the
assumptions of Proposition 2.14. Then we apply Proposition 2.14 to S = {v1} to choose a
cuspidal automorphic representation o of U(W) such that 7®o is distinguished by H. Then by
Proposition 2.13, the weak base change of T®o is n—distinguished by Hj = GLjy, 11, x GL,, .
By induction hypothesis, the weak base change of ¢ is (-, resp.) distinguished by GL, p if
n is odd (even, resp.). Together we conclude that the weak base change of 7 is (-, resp.)
distinguished by GLy,41,7 if n 4+ 1 is odd (even, resp.). This completes the proof. O

Remark 10. If we have the trace formula identity for all test functions f (say, after one
proves the fine spectral decomposition), then we may use the proof of Proposition 2.13 to
show first the existence of weak base change, then use the proof of Theorem 1.4 to show the
distinction of the weak base change as predicted by the conjecture of Flicker—Rallis. But it
seems impossible to characterize the image of the weak base change using the Jacquet—Rallis
trace formulae alone.

2.7 Proof of Theorem 1.1: (i) = (i)

Now we finish the proof of the other direction of Theorem 1.1: (i) = (ii). We may prove a
slightly stronger result, replacing the condition (2) by the following: “m,, is supercuspidal at
a split place vy, and m,, is tempered at a split place va # v;.”

By Theorem 1.4 (whose proof also works if we only assume the temperedness of 7, ), the
weak base change II = BC(7) is n-distinguished by H). By the assumption on nonvanishing of
L(1/2,11, R), we know that II is also distinguished by Resg/rGLy,. Therefore, I1j is a non-zero
distribution on G’(A) and we have Ij(f’) # 0 for some decomposable f' = ®,f/. Note that
the multiplicity one also holds in this case:
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Similar to the decomposition of the distribution J; (2.25), we may fix a decomposition
In=cu| [ In,.
v

In particular, iy # 0 and for the f/ above, Iy, (f/) # 0 for all v. We want to modify f at the
two places v1,v9 to apply Proposition 2.11.

It is easy to see that we may replace f; by essentially a matrix coefficient of 7, such that
the non-vanishing I11 # 0 remains. Now note that, at the split place vy, there is a nonzero
constant c,:

IHUQ (f{;g) = cve]ﬂ'vQ (fvz)

if I1,,, is the local base change of m,, and f., is the transfer of f;, as prescribed by Proposition
2.5. By Proposition 2.12, Jr, (fu,) # 0 for some f,, supported in Z-regular semisimple locus.
Therefore, we may choose ffl’}2 supported in Z-regular semisimple locus such that IHUQ( {)2) # 0.

Now we replace f; ,i = 1,2 by the new choices. Then we let the tuple (fy-) be a transfer of
f’ satisfying the conditions in Proposition 2.11. By the trace formula identity of Proposition
2.11, we have

In(f) = > Ty (fur)
7rW/

where the sum in right hand side runs over all W', and all 7y nearly equivalent to w. There
must be at least one term J/(fy) # 0 for some W’. This completes the proof of Theorem
1.1.

2.8 Proof of Theorem 1.2.

Now we may prove Theorem 1.2. Assume that o = BC(m;) for a cuspidal automorphic
representation 7 of some unitary group U (V') where dim V' = n+1. Then by Proposition 2.14,
we may find a cuspidal automorphic 7y of U (W) for a Hermitian subspace W of codimension
one such that m = m; ® w9 is distinguished by H. Let 7 be the weak base change of ms. Then
by Theorem 1.1, the Rankin—Selberg L-function L(o x T, %) # 0. This completes the proof.

3 Reduction steps

In this and the next section, we will prove the existence of smooth transfer at a non-archimedean
non-split place (Theorem 2.6) as well as a partial result at an archimedean non-split place
(Theorem 3.14).

In this section, we reduce the question to an analogue on “Lie algebras” (an infinitesimal
version) and then to a local question around zero. Let F' be a local field of characteristic
zero. In this section, both archimedean and non-archimedean local fields are allowed. Let
E = F[+/7T] be a quadratic extension where 7 € F’*. We remind the reader that, even though
our interest is in the genuine quadratic extension E/F, we may actually allow E to be split,
namely, 7 € (F*)2.
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3.1 Reduction to Lie algebras

Categorical quotients. We consider the action of H' := GL,, p on the tangent space of
the symmetric space Sy+1 (cf. §2.1) at the identity matrix 1,,41:

(3.1) Spr1:= {z € Myi1(B)|a + 7 = 0},

which will be called the “Lie algebra” of S,+1. When no confusion arises, we will write it as
S for simplicity. It will be more convenient to consider the action of H' on the Lie algebra of
GLnJrl,F:

glht1 ~ {x e My (E)|x = z}.

The right hand side is isomorphic to &,41 non-canonically.
Let W be a Hermitian space of dimension n and let V= W @ FEu with (u,u) = 1. We
identify the Lie algebra (as an F-vector space) of U (V') with:

(3.2) V) ={x € Endg(V)|x + 2™ = 0},
where x* is the adjoint of x with respect to the Hermitian form on V:
(za,b) = (a,z*b), a,beV.

We consider the restriction to H = Hy = U(W) of the adjoint action of U(V') on U(V) and
(V).

Relative to the H-action or H’-action, we have notions of regular semisimple elements.
Analogous to the group case, regular semisimple elements have trivial stabilizers. We also
define an analogous matching of orbits as follows. We may identify Endg(V') with M, 1(F)
by choosing a basis of V. Then for regular semisimple z € &(F) and y € U(V)(F), we say
that they (and their orbits) match each other if x and y, considered as elements in M, 1 (F),
are conjugate by an element in GL,(E). We will also say that x and y are transfer of each
other and denote the relation by = < y.

Then, analogous to the case for groups, the notion of transfer defines a bijection between
regular semisimple orbits

(3.3) S(F)s/H'(F L[u F),s/H(F),

where the disjoint union runs over all isomorphism classes of n-dimensional Hermitian space
W. We recall some results from [51], [62, §2]. For the natural map 7 : 6(F) — (& /H')(F)
(rw,p : WV)(F) — (U(V)/H)(F), resp.), the fiber of a regular semisimple element consists
of precisely one orbit (at most one, resp.) with trivial stabilizer. Moreover, 7%, is surjective.
In particular, 77 induces a bijection:

S(F)rs/H'(F) ~ (&/H")(F)ys
And 7w, F induces a bijection between (V') (F),s/H(F') and its image in (U(V)/H)(F').
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A more intrinsic way is to establish an isomorphism between the categorical quotients
between &/H' and U(V)/H. To state this more precisely, let us consider the invariants on
them. We may choose a set of invariants on &,, 1

(3.4) tralz, e-a’-e*, 1<i<n+1,1<j<n;
and on (V) for V =W @ Eu:
(3.5) tr Ay, (Pu,u), 1<i<n+1,1<j<n,

A b

where z € G,,41 and y € (V). If we write &, 41 = = (c d

> , A € G,, an equivalent set of

invariants on &, are
(3.6) tratA, c-ATb, d, 1<i<n0<j<n-—1.

Similarly for the unitary case.

Denote by Q = A?2"*! the 2n + 1-dimensional affine space (in this and the next section we
are always in the local situation and A will denote the affine line instead of the ring of adeles).
Then the invariants above define a morphism

e Gni1 — Q

z— (tralze-al - e¥), i=1,2,.,n+1,j=1,2.,n.

To abuse notation, we will also denote by mg the morphism defined by the second set of
invariants above. Similarly we have morphism denoted by 7y for the unitary case. We will
simply write 7 if no confusion arises.

Lemma 3.1. For each case V = & or (V), the pair (Q,my) defines a categorical quotient of
V.

Equivalently, the set of invariants defined by (3.4) ((3.5), resp.) is a set of generators of the
ring of invariant polynomials on &,,11 (U(V'), resp.). Moreover, we have an obvious analogue
if we replace G, 11 by glpi1.

Proof. As this is a geometric statement, we may extend the base field to the algebraic closure
where two cases coincide. Hence it suffices to treat the case ¥V = & or the equivalent case
V = gly+1. We will use the set of invariants (3.6) for gl,,1. We will use Igusa’s criterion
([33, Lemma 4], or [18, Theorem 4.13]): Let a reductive group H act on an irreducible affine
variety V. Let ) be a normal irreducible affine variety, and 7 : V — @) be a morphism which
is constant on the orbits of H such that

(1) @ — (V) has codimension at least two;

(2) There exists a non-empty open subset Qp of @ such that the fiber 771(q) of ¢ € Qo
contains exactly one closed orbit.
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Then (Q,7) is a categorical quotient for the H-action on V.
For gl,,1 1, the morphism 7 is clearly constant on the orbits of H. Now we define a section
of 7 close to the classical companion matrices. Consider

0 1 0 .0
0 0 1 .0

0 1 O
bn  bn_1 by 1
an  QAp-1 a1 d

Then its invariants are
tr A'A=(=1)"1b,c- AV - b= aj+1,d i=1,2,..,n,7=0,1,2,...,n—1.

This gives us an explicit choice of section of 7 and it shows that 7 is surjective. This verifies
(1). By [51], for all regular semisimple ¢ € @, the fiber of ¢ consists of at most one closed
orbit. It follows by the explicit construction above that the fiber contains precisely one closed
orbit. The regular semisimple elements form the complement of a principle divisor and hence
we have verified condition (2). This completes the proof. O

By this result, we have a natural isomorphism between the categorical quotients &/H’
and YU(V')/H. In the bijection (3.3) the appearance of disjoint union is due to the fact that
the map between F-points induced by 7g is surjective but the one induced by gy is not.

Lemma 3.1 also allows us to transfer semisimple elements (not necessarily regular): we
say that two semisimple elements x € S(F) and y € U(V)(F) match each other if they
have the same invariants, or equivalently, their images in the quotients correspond to each
other under the isomorphism between the categorical quotients. A warning is that, given a
semisimple z € G(F) (not necessary regular), in general there may be more than one matching
semisimple orbits in U(V)(F).

Smooth transfer conjecture of Jacquet—Rallis. Before we state the infinitesimal version
of smooth transfer, we need to define a transfer factor on the level of Lie algebras.

Definition 3.2. Consider the action of H' on X = gl,+1 or &. A transfer factor is a smooth
function w : X(F),s — C* such that w(z") = n(h)w(z).

Obviously, two transfer factors w,w’ differer by a H'(F)-invariant smooth function ¢ :
X(F)rs — C*. If £ extends to a smooth function on X (F) (with moderate growth towards
infinity for a norm on X (F') if F' is archimedean), we say that w,w’ are equivalent and denote
by w ~ W'.

We have fixed a transfer factor (2 earlier on the relevant groups by (2.21), (2.22) and (2.23).
We now define a transfer factor on the Lie algebras. If \/7x € &(F) is regular semisimple, we
define

(3.7) w(vTz) := n(det(e, ex, ex?, ..., ex™)).
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Now we may similarly define the notion of transfer of test functions on &(F') and (V) (F).
For an f' € € (6&(F)), and a tuple (fw)w where fiy € €F(U(V)(F)), they are called a
(smooth) transfer of each other if for all matching regular semisimple S(F) 3 < y €
UV)(F), V =W @ Eu, we have

w(ﬂf)O(CL‘, f/) = O(yv fW)

For n € Zx1, we rewrite the “smooth transfer conjecture” of Jacquet-Rallis ([39]) for the
symmetric space S,+1 and the unitary group U(V) as follows:

Conjecture S,.1: For any ' € €F(Sp+1(F)), its transfer (fw)w exists, where fy €
¢F(U(V)(F)). And the other direction also holds, namely, given any a tuple (fw)w, there
exists its transfer f'.

The corresponding statement for Lie algebras can be stated as

Conjecture &,,11: For any f' € €F(S,4+1(F)), its transfer (fw)w exists, where fy €
CF MV )(F)). And the other direction also holds, namely, given any a tuple (fw)w, there
exists its transfer f'.

Note that the statement depends on the choice of a transfer factor. But it is obvious that
the truth of the conjecture does not depend on the choice of the transfer factor within an
equivalence class.

Reduction to Lie algebras. We now reduce the group version of smooth transfer conjec-
ture to the Lie algebra one.

Theorem 3.3. Conjecture &,4+1 implies Conjecture Sp41.

To prove this theorem, we need some preparation. For v € E we define a set
D, ={x e My41(F)|det(v — z) = 0}.

We will choose a basis of V' to realize the unitary group U (V) (U(V), resp.) as a subgroup (a
F-sub-vector-space, resp.) of GLy 11 5 (My+1(E), resp.).

Lemma 3.4. Let £ € E'. The Cayley map
Oég : Mn+1(E) - Dl - GLn_;,_l(E)
x> (1 +x)(1—2)

induces an H -equivariant isomorphism between &, 1(F)—D1 and Sy41(F)—De¢. In particular,
if we choose a sequence of distinct 1, &, ..., Enro € EY, the images of &,,41(F) — D1 under ag,
form a finite cover by open subset of Sp4+1(F).

Similarly, o induces an U (W )-equivariant isomorphism between (V' )(F)—Dy and U(V)(F)—
De.

Proof. First it is easy to verify that the image of ag lies in S = Sp,41, i.e.,:

al@)a(z)=1+z2)(1-z)tQ+2)(1-2)"t =1,
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which holds as long as char F' # 2. Now we note that if det({ — s) # 0, ag has an inverse
defined by

s> —(E+8)(E—s)h

This shows that the image of a¢ is S — D¢ and a¢ defines an isomorphism between two affine
varieties.
The same argument proves the desired assertion in the unitary case. O

Lemma 3.5. The transfer factors are compatible under the Cayley map .

Proof. 1t suffices to consider the case y = 1 as the argument is the same for a general . Note
that (1 + z) and (1 — x)*! commute. We have

Q1+ 2)(1 —2) ™) = ' (det((1 +2(1 — 2) " yie*)1 ).
Set T = 2(1 — x)~!. Then it is easy to see that the determinant is equal to
det((1 + T)'e*)2) = det(T"e*)—,
by elementary operations on a matrix. This is equal to
2" (—1)"(" 12 det((1 — 2)e*)P) = 2" det(x'e*) .
Therefore we have proved that
Q1 +2)(1 —2) ™) = /(2" det(@’e" 1) = - wlw/VT).

for a non-zero constant c.

O]

For more flexibility, we will consider the following statement P, indexed by p e F'*:

P,: For f € €°(6n+1 — Dy,), its transfer (fw) exists and can be chosen such that fy €
€. (MV) —D,). And the other direction also holds.

Then it is clear that if P, holds for all ;€ F'*, then Conjecture S,+1 follows by applying
a partition of unity argument to the open cover of S, 1 and U (V') for distinct po, ..., fn+1-

To prove Theorem 3.3, it remains to show the following:

Lemma 3.6. Conjecture &,41 implies P, for all pe F*.

Proof. Fix a p. Assume that (fi) is a transfer of f € €.°(& —D,,). Let Y = supp(f) = &(F)
and Z = 7'(Y). It suffices to show that for each W there exists a function ay € € (U(V)(F))
(smooth when F' is archimedean, locally constant when F' is non-archimedean) satisfying

1. aw is H(F)-invariant,
2. aw‘ﬂ‘}}(z) =1,

3. aw|p, =0.
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Then we may replace fy by fiaw, which will still be in € (U(V)(F')) and has the same
orbital integral as fyy .

Now note that Z = n'(Y) < (6/H')(F) is compact. And D,, is the preimage under 7 of
a hypersurface denoted by C' in (6/H’)(F') such that Z n C = . Then we may find a €%
function § on (§/H')(F) satisfying

1. Blz=1.
2. Ble=0.

When F' is archimedean, one may construct 5 using a bump function. When F' is non-
archimedean function, we may cover Z by open compact subsets Z which is disjoint from C.
Then we take 8 to be the characteristic function of Z.

Then we may take ay to be the pull-back of 3 under my, .

The other direction can be proved similarly. O

We have completed the proof of Theorem 3.3.

3.2 Reduction to local transfer around zero

The aim of this section is to reduce the existence of transfer to the existence of a local transfer
near zero (Proposition 3.16). From now on we will denote by Q, = A?"*! or simply @ the
common base &,,41/H' ~ (V) /H as an affine variety.

Localization. We fix a transfer factor w and let 7’ : §(F) — Q(F) and 7 : U(V)(F) — Q(F)
be the induced maps on the rational points.
Definition 3.7. Let ® be a function on Q(F'),s which vanishes outside a compact set of Q(F).

(1) For x € Q(F) (not necessarily regular-semisimple), we say that ® is a local orbital
integral for & around x € Q(F) if there exists a neighborhood U of x in Q(F) and a
function f € €F(S(F)) such that for all y € U,s, and z with 7'(z) = y we have

O(y) = w()0(z, f).

(2) Similarly we can define a local orbital integral for A(V') around a point x € Q(F).

Note that if ® is a local orbital integral for a transfer factor w, it is also a local orbital
integral for any other equivalent transfer factor w’ ~ w.
We have the following localization principle for orbital integrals.

Proposition 3.8. Let ® be a function on Q(F),s which vanishes outside a compact set U of
Q(F). If ® is a local orbital integral for & at x for all x € Q(F), then it is an orbital integral,
namely there exists f € €F(&(F)) such that for ally € Q(F),s, and z with 7'(z) = y we have

O(y) = w()0(z f).
Similar result holds for ${(V').
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Proof. By assumption, for each x € U we have an open neighborhood U, and f, € €°(&(F)).
By the compactness of U, we may find finitely many of them, say zi,...,z,,, such that Uy,
cover U. Then we apply “partition of unity” to the cover of Q(F) by U, (i = 1,2,...,m)
and Q(F) — U to obtain smooth functions f;, 5 on Q(F) such that supp(83;) < Ux, and
supp(f) € Q(F) —U and B+ Y, B; is the identify function on Q(F). Since ®3 = 0, we may
write @ = > ®; where ®; = ®f; is a function on Q(F'),s which vanishes outside Uy,. Then
a; = B on’ is a smooth H'(F)-invariant function on &(F) and f,,a; € €°(S(F)). We claim
that for every y € Q(F),s and z € 7'~1(y), we have w(2)O(z, fr;ci) = ®;(y). Indeed, the
left hand side is equal to w(2)O(z, fz,)B(y). If y is outside U,,, then both sides vanish. If
y € Uy,, then by the choice of f,, we have w(2)O(z, fz,) = ®(y). By the claim, we may take
f =2 fz;0i to complete the proof. O

For f € €.°(6(F)), we define a “direct image”  ,(f) as the function on Q(F);.:

T (F)(@) = w(y)O(y, f),

where x € Q(F),s,y € (7')~!(z). It clearly does not depend on the choice of y. Similarly, for
fw € €F((V)), we define a function my« (fi) on Q(F),s (extend by zero to those z € Q(F'),s
such that 7y, (z) is empty). If the dependence of W is clear, we will also write it as ., (fiw)
with the trivial transfer factor w = 1.

Definition 3.9. For x € Q(F) (not necessarily reqular-semisimple), we say that the local
transfer around x exists, if for all f € € (S(F)), there exist (fw)w (fw € € (M(V))) such
that in a neighborhood of x in Q(F), the following equality holds

Thw() = D mwe(fw),
w

and conversely for any tuple (fw)w, we may find f satisfying the equality.

Descent of orbital integrals We recall some results of [2]. Let V be a representation of a
reductive group H. Let m:V — V/H be the categorical quotient. An open subset U c V(F)
is called saturated if it is the preimage of an open subset of (V/H)(F).

Let x € V(F') be a semisimple element. Let N}j—%z be the normal space of Hz at z. Then
the stabilizer H, acts naturally on the vector space N})wa. We call (Hm,N}ij) the sliced
representation at x. 7 7

An étale Luna slice (for short, a Luna slice) at x is by definition ([2]) a locally closed smooth
H,-invariant subvariety Z > z together with a strongly étale H,-morphism ¢ : Z — N})Ix ., such
that the H-morphism ¢ : H xpg, Z — V is strongly étale. Here, H x g, Z is (H x Z)//Hx for
the action h,(h,z) = (hh; !, h;) and an H-morphism between two affine varieties ¢ : X — Y
is called strongly étale if ¢/H : X JH — Y JH is étale and the induced diagram is Cartesian:

¢

X Y
X}/H Oy //J/H
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When there is no confusion, we will simply say that Z is an étale Luna slice.

We then have the Luna’s étale slice theorem: Let a reductive group H act on a smooth
affine variety X and let x € X be semisimple. Then there exists a Luna slice at x. We will
describe an explicit Luna slice in the appendix for our case. We may even assume that the
morphism ¢ is essentially an open immersion in our case.

As an application, we have an analogue of Harish-Chandra’s compactness lemma ([28,
Lemma 25]).

Lemma 3.10. Let x € V(F) be semisimple. Let Z be an étale Luna slice at x. Then for
any Hy(F)-invariant neighborhood U of x in Z(F') whose image in (Z|Hy)(F) is (relatively)
compact, and any compact subset = of V(F'), the set

{he Hy(F)\H(F):U" " E + &}
is relatively compact in Hy(F)\H(F). Recall that the notation U" is given by (1.7).
Proof. We consider the étale Luna slice:
¢ Hxpy Z— V.
Consider the composition:
Hxpy, Z~Vxyg Z|Hy —V x Z[H,.

The composition is a closed immersion. Shrinking Z if necessary, we may take the F-points
to get a closed embedding

i: (H xg, Z)(F) = V(F) x (Z/H,)(F).
We also have the projection
Hxpy, Z=(H x Z)JH, — H,\H.
We denote
g (H xpg, Z)(F) = (H\H)(F).

Note that H,(F)\H(F) sits inside (H,\H)(F) as an open and closed subset. Let U’ be
the image of U in (Z/H)(F). Then we see that the set

{he Hy(F)\H(F):U" nZ # &}
is contained in
it EnU")
which is obviously compact.

We also need the analytic Luna slice theorem ([2, Theorem 2.7]): there exists
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(1) an open H (F)-invariant neighborhood U of H(F)z in V(F) with an H-equivariant re-
tract p: U — H(F)x;

2) a Hj-equivariant embedding 1 : p~1(z) — NY__(F) with an open saturated image such
Hzxz.x
that ¢ (z) = 0.

v
Ny o(F) =—p " (@) u

b

0 x H(F)x

Denote S = p~!(z) and N = N}jxx(F) The quintuple (U, p, v, S, N) is then called an analytic
Luna slice at x.

From an étale Luna slice we may construct an analytic Luna slice from (cf. the proof of
[2, Corollary A.2.4]). In our case, the existence of analytic Luna slice is self-evident once we
describe the explicit étale Luna slices in the appendix.

We recall some useful properties of analytic Luna slice ([2, Corollary 2.3.19]). Let y €
p~1(z), and z := ¥(y). Then we have

(1) (H(F)z). = H(F)y.

V)
(2) Niryyy = Nit, ()22

as H(F)y-spaces.
(3) y is H-semisimple if and only if z is H,-semisimple.
As an application, we state the Harish-Chandra (semisimple-) descent for orbital integrals.

Proposition 3.11. Let = € V(F) be semisimple and let (U,p,v,S,N) be an analytic Luna
slice at x. Then there exists a neighborhood U < (S) of 0 in N})Ixr(F) with the following
properties

e To every f € € (V(F)), we may associate f, € %COO(NEI@(F)) such that for all semisim-
ple z €U (with z = (y)) such that 0|y, ry =1, we have

F@"n(h)dh = Fo(zMn(h)dh.

(3.9) f
(N H(F) Hy (F)\H (F)

e Conversely, given f, € CKCOO(N};%%(F)), we may find f € € (V(F)) such that (5.8) holds
for all semisimple z € U with n\Hy(F) =1.

Proof. Let U’ be a relatively compact neighborhood of x in S and let U = ¥(U'). By Lemma
3.10, we may find a compact set C' of H,(F)\H (F') that contains the set

{he H.(F)\H(F) :U" ~ supp(f) + &}.

In the non-archimedean case, we may assume that C is compact open. Choose any function
a € €F(H(F)) such that the function

H(F\H(F) 5 h v fH o
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is the characteristic function 1¢ in the non-archimedean case (or, in the archimedean case,
a bump function that takes value one on C' and zero outside some larger compact subset
Cy o C). We define a function on S by:

fe(y) = f f™Ma(h)n(h)dh.
H(F)

In the non-archimedean case, we may assume that S is a closed subset of V and in the
archimedean case, we may assume that S contains a closed neighborhood of z in V whose
image in N}jx .(F) is the pre-image of a closed neighborhood in the categorical quotient.
Then possiblyﬁsing a bump function in the archimedean case to modify f,, we may assume
that f, € €°(S). The map f — f, depends on Y. We may also view f, € ‘KCOO(N}/IWC(F)) via
the embedding v : S < N} _(F).

Now the right hand side of (3.8) is equal to

f j £ a(g)n(g)dgn(h)dh
Hy(F)\H.(F) JH(F)

_ j f Fu®)a(h " g)n(g) dgdh
Hy(F)\H:(F) JH(F)

F?)a(h™ pg)dpn(g)dgdh.

ny(F)\Hz(F) Jl‘ly(l")\H(F) JHy(F)

Interchange the order of the first two integrals and notice that when g € C

a(h™'pg)dpdh = f a(h~tg)dh = 1.

ny(F)\Hm(F) JHy(F) «(F)

By Lemma 3.10, the value of the above integral outside C' does not matter when y € U’. We
thus obtain

f £ ) 1o(a)n(g)dg.
Hy(F)\H(F)

This is equal to the left hand side when y € U’ (or equivalently, ¥ (y) = z € U).

To show the converse, we note that 1(9) is saturated in NY, (F). Replacing f; by fs-1s
in the non-archimedean case, and by f, - ag for some bump function « in the archimedean
case, we may assume that supp(fz) < 1¥(S). Then we choose a function 5 € €°(H(F')) such
that

(3.9) f Bh)n(h)dh = 1.
H(F)

Consider the natural surjective map

H(F)xS—->U
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under which H(F) x S is a H,(F)-principal homogenous space over U (in the category of
F-manifolds). It is obviously a submersion. We define f € €.°(U) by integrating 5 ® f, over
the fiber

Fu") = f Fo((y")Blg h)dg, ye S,he H(F).
«(F)

Then f € €*(U) can be also viewed as an element in €.°(V(F')). The left hand side of (3.8)
is then equal to

j j Fo(@ () B(g™ h)dg n(k)dh
Hy(F)\H(F) JH(F)

f f j Fo( () Blg~ p h)dg n(h)dh
Hy(F)\H(F) JHy(F)\H(F) JHy(F)

=j (J B(g_lh)n(h)dh> f((y9))dg.
Hy(F\Ho(F) \JH(F)

By (3.9), this is equal to

f £ (@ @9)n(g)dy.
H,

y (F)\Hz (F)

This completes the proof. ]

Smooth transfer for regular supported functions.

Lemma 3.12. Let V be either & or W(V'). Let f e € (V(F)). Then the function m . (f) is
smooth on (VJH)(F)rs and (relatively) compact supported on (VJH)(F).

Proof. The smoothness follows from the first part of Proposition 3.11 and the fact that the
stabilizer of a regular semisimple element is trivial. The support is contained in the continuous
image of a compact set, hence (relatively) compact. O

Proposition 3.13. (1) If f' € € (6,s), then myw € € (Q(F)ys). Conversely, given
¢ € €F(Q(F),s) viewed as a function on Q(F), there exists f' € € (S,s) such that

W*,w(f/) = 9.

(2) If fw € €2 UV )rs), then mi(fw) € C°(Q(F)rs). Conversely, given ¢ € G2 (Q(F)rs)
viewed as a function on Q(F), there exists a tuple (fiv € €MV )rs))w such that

ZW 7"'>|<(fW) = ¢.

Proof. We only prove (1) and the proof of (2) is similar. By Lemma 3.12, it suffices to show
the converse part. By the localization principle Proposition 3.8 (or rather its proof), it suffices
to show that for every regular semisimple x € Q(F'), ¢ is locally an orbital integral at = of
a function with regular-semisimple support. We now fix a regular semisimple z. Note that
the stabilizer of z is trivial. When choosing of the analytic slice, we may require that S is
contained in the regular semisimple locus. Then the result follows from the decent of orbital
integral, i.e., the second part of Proposition 3.11. O

37



This immediately implies:

Theorem 3.14. Given [’ € €°(S,s), there exists its smooth transfer (fw) such that fy €
CF(MV)ys). Conversely, given a tuple (fy € € (U(V)rs))w, there exists its smooth transfer
1 e€r(Sys).

In particular, this includes the existence of local transfer at a regular semisimple point

z € Q(F).

We also emphasize that in Theorem 3.14, the local field F' is allowed to be archimedean.

Reduction to local transfer around 0 of sliced representations. The result in the
rest of this section relies on the results in the appendix B on the explicit construction of Luna
slices. The construction is very technical and we decide to write it as an appendix. We need
the explicit construction, instead of the abstract existence theorem, for at least one reason: we
need to compare the transfer factors for the original and the sliced representations (Lemma
3.15 below).

We now fix z € Q(F). Within the fiber of z, there are one semisimple H’-orbit in &,, 41
and finitely many semisimple H-orbits in (V). Note that there may be infinitely many
non-semisimple orbits within the fiber. By the description of the sliced representations at
semisimple elements in the appendix B, we know that they are products of lower dimensional
vector spaces that are of the same type as & or (V') with possibly extending the base field
F to a finite extension. So we may also speak of the local transfer around zero of those sliced
representations.

To compare the local transfer at z, and at zero of the sliced representations, we need
to compare their transfer factors. We may define an equivalent choice of transfer factors as

follows. For z = <)5 Z) € gly+1,F we define

v(x) = det(u, Xu, X2u, ..., X" u).
Then the transfer factor can be chosen as n(v(z)) € {£1}.

Lemma 3.15. We may choose an Hy-invariant neighborhood of x such that for any y in this
neighborhood, w(y) is equal to a non-zero constant times w(Y(y)).

Proof. We only treat the two basic case: (1) r =0, (2) r = n, where r is as in the appendix B.
The general case can be reduced to those two by the same strategy as in the proof of Lemma
B.4 in the appendix B. When r = n, namely x is regular semisimple so that H, is trivial, the
assertion follows since there is a neighborhood of x over which w is a constant. When r = 0,
using the notations in (B.3) we have

v(y) = +v((y)) det(ad(Y), glot1/ghs1,v1,) "2,

where det(ad(Y), glyt1/0bht1.v1,) "2 is a square root of det(ad(Y), gly+1/8l11v;,) (for exam-
ple it can be given by the determinant of ad(Y) on the upper triangular blocks). Since
det(ad(X), gly+1/0lh+1,x,,) # 0, we may shrink the neighborhood if necessary such that
n(v(y)) and n(v(¢(y))) differ only by a non-zero constant. O
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Proposition 3.16 (Reduction to zero). Fiz z € Q(F). If the local transfer around zero exists
for the sliced representations at z, then the local transfer around z exists.

Proof. By Proposition 3.11 , the orbital integral of regular semisimple element near a semisim-
ple element can be written as an orbital integral of regular semisimple elements near zero of
the sliced representation. By our construction in the appendix B, the choice of étale and
analytic Luna slices on &,,+1 and (V)’s can be made compatible. Moreover, the transfer
factors are compatible with respect to the choice of analytic Luna slices by Lemma 3.15. This
completes the proof. O

Remark 11. We see that the reduction steps are along the same line as those in the clas-
sical endoscopic transfer by Langlands—Shelstad. The only non-trivial point is the explicit
construction of the étale Luna slices which is slightly more involved than the case of adjoint
action of a reductive group on its Lie algebra.

4 Smooth transfer for Lie algebra

In this section we prove Theorem 2.6. From now on we assume that F' is a non-archimedean
local field of characteristic zero.
4.1 A relative local trace formula

To simplify notations we unify the linear side and the unitary side in this subsection. Let F
be a field and F be an étale F-algebra of rank two. Namely, F is either

e a quadratic field extension of F', or
o I'x F.

Let W be a free E-module of rank n and (-,-) : W x W — E a non-degenerate Hermitian
form. We denote by H = Hyy the algebraic group U(W):

H=UW)={heAutg(W) : (hu,w) = (u,v),u,v e W}
and LU(W) its Lie algebra:
UW) ={X € Endg(W) : (Au,v) = —(u, Av)}.

Note that we allow E = F x F, in which case we have H ~ GL,,.

We will use x — Z to denote the (unique) non-trivial F-linear automorphism of E. In the
case ' = F x F, it is the permutation of the two coordinates.

We consider the representation of H = Hyy on the F-vector space:

(4.1) V=uUW) x W.
We usually denote by z = (X, w) an element of V for X € (W), w € W. We define

(4.2) Az) = AX,w) = det((X w, XTw))7 L.
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Then z is regular semisimple if and only if A(z) # 0. In the case E = F x F', we also consider
gl, x F,, x F™ with the natural action of H = GL,, by

h-(X,u,v) = (b ' Xh,uh™t, hv).
Similarly we define for an element z = (X, u, v)

(4.3) Alz) = A(X,u,v) = det(uX”jv)Zj_:lO.

Then z is regular semisimple if and only if A(x) # 0. In either case, we denote by D(X) the
discriminant of X € (W) or gl,,, namely

(4.4) D(X) =] [ = 2)%
ij

where A1, Ag, ..., A, are the n eigenvalues of X.

Upper bound of orbital integrals. We first estimate the orbital integral for a regular
semisimple x € V:

(4.5) Ou(f) = Oz, f) = fo@h)n(h)dh, feERv),

where 7 is any (unitary) character. Let h be the Lie algebra of H = Hyy. Then we have
V=hxW.

Lemma 4.1. Let Q < h(F) be a compact open set. Let T be a Cartan subgroup of H(F')
and t < H(F) be the corresponding Cartan subalgebra. Let ¢ € €°(W). Then there exists
a constant r > 0 depending only on n and a constant C depending only on n,p, Q) with the
following property: for all reqular semisimple X € t, and h € GL,(F) such that X" € Q, we
have

J cp(wh)dt’ < C - max{1,log|A(X,w)|}".
T

Proof. We prove this in the general linear case. The unitary case is similar and easier. We
write V = gl, x F,, x F™ and = = (X,u,v). If A" Xh € Q, then for all 4,5 = 0,....,n — 1, the
following vectors are in a compact set depending only on the support of ¢ and Q:

R4 X, uXth.

Write 01 = (X)i—0,..n-1 € gln(F) and dy = (UXj)j:O,...,n—l € gl,(F) so that A(X,u,v) =
det(d102). Then the condition becomes that the elements

R4y, both,
are in a compact set Qy of gl,(F) depending only on the support of ¢ and Q.

We may identify t with [[;_, E; and T with [[;_; E where E;/F is a degree n; field
extension such that Y)n; = n. Let P be the parabolic of H = GL,_; associated to the
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partition > n; = n with Levi decomposition P = MN and we may assume that 7" < M.
Then T is elliptic in M. By Iwasawa decomposition H = NMK for K = GL,(OF), we may
write h = nmk, d1 = nymiky, 02 = kamaone. By enlarging €y if necessary,we may assume that
0 = KO K (i..e, bi-K-invaraint). Since h='td; = k~'m~n"Ynimik; € Q1, we may see
that the Levi component m~1t~!m; € Qs for a compact set Qy of My (F). Similarly we have
maotm € Qo. Let ¢t = (t(i))f:1 € T where t( € E, and similarly for m,m;, mo. Then there
exist constants C, Co > 0 such that for all : = 1,2, ..., e:

Clldet(mgi)(m(i))_l)] < ] < C’zldet(mgi)m(i))\_l.
The volume of such ¢; is bounded above by
Cy| det(m$m @)~
O] det(m;” (m(@) )

for constants C3, Cy. In particular, the integral in the lemma is zero unless for all ¢ = 1,2, ..., e
we have

Cs + log = C4 — log| det(mgi)mg)ﬂ

Cy — log| det(mgi)mg))\ > 0.

Under this assumption, there is a constant C' such that for all ¢ = 1,2, ..., e:

Cy — log| det(m{'m{)| < Cs — 3 log| det(m{”m}”),
i—1
which is equal to
Cs — log| det(mimg)| = C5 — log| det(A(X, u,v))]|.

Then it is easy to see that the integral over T is either zero or bounded above by the
L®-norm of ¢ times

(Cs — log|det(A(X, u,v)) ).
Now the lemma follows immediately. O
Before we proceed, we introduce one more definition: we say that x = (X, w) is strongly
regular if x, X, w are all H-regular semisimple (ie., A(z) # 0, (w,w) # 0 and D(X) # 0).
Proposition 4.2. Let f € € (V). Then there exist a constant C depending on f, and an
integer r > 0, such that for all x € V strongly regular:
|O(x, f)| < C - max({1, | log |A(«)||"} max{1, [D(X)[~/?}.

Proof. We only give the proof in the general linear case. The unitary case is similar and easier.
We choose a (finite) complete set of representatives of Cartan subalgebras t up to H-conjugacy.
We may assume that X € t and f = ¢ ® ¢ where ¢ € €°(gl,,(F)) and ¢ € €.°(F,, x F") as in
Lemma 4.1. Then we have Now we have

0(z, /)| < Cs - max{1, | log |A(z)[|} jH/T 16|(htoh™")dh.

By the bound of Harish-Chandra ([29]) on the usual orbital integral, the integral in the right
hand side is bounded by a constant times max{1,|D(X)|~'/?}. Since there are only finitely
many t, we may choose a uniform constant C' to complete the proof. O
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Local integrability. We want to show the orbital integral, as a function on V), is locally
integrable. The following result is probably well-known. But we could not find a reference so
we decide to include a proof here.

Lemma 4.3 (Igusa integral). Let P(z) € F|x1,...,xm]| be a polynomial. Then there exists
€ > 0 such that
J P(2)|~da < .

]

3
If P is homogeneous, then there exists € > 0 such that the function |P(x)|~¢ is locally integrable
everywhere on F™.

Proof. The first assertion implies the second one. If P is homogenous of degree k > 0, assuming
the first assertion we want to show that |P|€ is locally integrable around any z¢ € F™. Indeed,
we may assume that zg € w™""O™ for some n > 0. By homogeneity, we have

J |P(z)|"dx = |w|m”+ﬁk"f |P(z)|"dz < 0.
o nrOm m

This shows the local integrality around zg.
To show the first assertion, we may assume that P € Op[z] and F' = Q,. Now following
Igusa ([9]) we define R
Ny := #{z € (Zp/p")"|f(x) =0 modp"}.

Let w,, = Nn/p"m. Then w,+1 < w, and we want to prove that there exists ¢ > 0 such that
P (wn — wng) < 0.
n

We define an associated Poincare series

~ w ~
P(T) = ). N,T".
n=0

By the rationality of P(T) (proved first by Igusa, [J]), we may write
P(T) = Q(T) | [(1 = i p™T)*iv,
1,J
where §; € R, k; € N5, and ; are distinct, a; ; are roots of unity, Q(T") is a polynomial ([9,

Remark 3.3]). We must have all 5; < m since N,, < [(Z,/p"™)™| = ¢"™ for all n. If all 8; < m,
then we certainly can choose € > 0 such that all 5; < m — € and hence

N, = O(p"™m=).

Assume now that 8y = m and all other 8; < m. Since |Nn| < p™" we must have all kg ; = 1
(i.e., no multiplicity). Then for suitable a; € C, and all € < m — max;.0{3;}, we have, when
n is sufficiently large

[Ny =P Y ajaf] = O(p" ")
j
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Let w;, = >;ajaq ;. Since a;j are roots of unity, the sequence wj, (n > 0) is periodic, say

with period N, i.e.: w;, = w},, . Then by

|wn —wi| = O(p™")

)

we have
n— When| +O@") = O0(p™™).

This completes the proof. O

Wy — Wyl < Wy — Wpg N < W

Remark 12. The integral in the lemma is called local zeta integral. The same result also holds
for archimedean local fields.

Corollary 4.4. There exists € > 0 such that the function
me:z = (X,w) eV — [D(X)| V2 log |A(x)|
1s locally integrable on V.

Proof. Let € be a compact subset of V. In Young’s inequality
1 1

abgidl_ia a7bap7q>077+7:17
q P 4q

we let p = 1 4 €1 to obtain

[DXO)PC2HIE)  log |A()|[*

<
me(x) 1+ ¢ q

We now need to use the Lie algebraic version of [28, Theorem 15|, namely: there exists
€3 > 0 such that the function X — |A(X)|~1/27¢ is locally integrable on ${(W). This implies
that for an appropriate choice of €, €1, the first term above is locally integrable on (W) x W.
Lemma 4.3 implies that the second term is also locally integrable. This completes the proof.

O

In summary we have showed that
Corollary 4.5. For any f € €*(V), we have
e The absolute value of the orbital integral x — |O(x, f)| is locally integrable on V.

o If X € h(F) is reqular semisimple, the function w — |O((X,w), f)| is locally integrable
on W.

o Ifwe W is reqular semisimple, the function X — |O((X,w), f)| is locally integrable on
h(F).
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A relative local trace formula We now show a local trace formula for the H-action on
V. We fix an H-invariant bilinear form

(o Vx Y- F

such that its restriction to any invariant subspace is non-degenerate (obviously such form
exists). We would like to consider the partial Fourier transform with respect to an invariant
subspace Vy of V. Let VOL be the orthogonal complement of Vy and we write z = (y, 2)
according to the decomposition V = Vy @ VOL. We define a partial Fourier transform Fy,, f:

(4.6) Foofy, z) = L FW )0y Yy, feCP(V), yeVozeVy.

We will choose the self-dual measure on V). Then the fact that Fourier transform is an
isometry on L? space can be written as:

(4.7) y fi(y) fa(y)dy = y Foo 1) Fvo fo(y)dy.

It is clear that, for two orthogonal subspace Vy, Vi:
Fveaws = Fyy © Fu, = Fy, o Fy,.

Returning to our case, V is (W) x W (i.e., either gl, x F, x F" for £ = F x F, or
(W) x W for a Hermitian space W for a quadratic field E extension). In each case we have
an abelian 2-group of Fourier transforms generated by the two partial transforms Fy ), Fw .

We now ready to prove a local relative trace formula for Lie algebras. The name comes
from the analogous (but much more difficult to prove) result of Waldspurger ([57]).

Theorem 4.6. Let V be (W) x W and Vy an invariant-subspace. We write x = (y, z)
according to the decomposition V = Vy @ VOL. Fiz a reqular semisimple z € Vol. For f1, fo €
¢ (V), we define an iterated integral

(48) T(f1. f) = f

Vo

( j f1<<y,z>h>n<h>dh> faly, 2)dy,
H(F)

where n is trivial in the unitary case. Then we have
(4.9) T(f1, f2) = T(f1, fa),

where f (f, resp.) denotes the partial Fourier transform associated to Vy, with respect to
(t—1, the complex conjugate of 1, resp.).

Proof. We consider the unitary case. The linear case is similar. The idea is the same as
in Harish-Chandra’s work on the representability of the character of a supercuspidal repre-
sentation. Take a sequence of increasing compact subsets §; of H such that H = U2 ,Q;.
Define

Oi(z. f) = L f(a)dh,
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Then it is clear that, for a regular semisimple X:

1—00

By (4.7) we have for any f1, fa € €°(V):

§ Ay, 2)") fa(y, 2)dy = s Filly, )" fa(y, 2)dy,

noting that the Fourier transform commutes with the H-action. Therefore we have

(410)  lim ( f1<<y,z>h>f2<y,z>dy>dh=nm ( fl«y,z)h)ﬁ(y,z)dy)dh.
Q; Vo Q; Vo

1—00 1—00

As ), is compact, we may interchange the order of integration. Obviously we have |O;((y, 2), f1)] <
|0:((y, 2), | f1])]- When z is regular semisimple, by Corollary 4.5 the function y — |O((y, 2), | f1|)
is locally integrable on V. By Lebesgue’s dominated convergence theorem we obtain

lim ( f1<<y,z>h>f2<y,z>dy>dh= O((y, 2), 1) falys 2)dy = T(f1, fo).
Q; Vo

1—00 Vo

Similarly we obtain T'( fl, fQ) from the right hand side of (4.10). This completes the proof.
O

A consequence. Now we specialize to the case n = 1. We deduce the representability of
the Fourier transform of an orbital integral on W = M x M™* where M is a one dimensional
F-vector space, M* its dual. We than have H = GL(M) ~ GL; 7 acting on W.

Corollary 4.7. For any quadratic character n (possibly trivial), the Fourier transform of the
orbital integral

~

(4.11) Ou(f) := wlw) jH Fhyn(mydn,  fecEw),

(here w(w) is the transfer factor defined in (3.7) for n = 1) is represented by a locally constant
H-invariant function on the regular semisimple locus Wy denoted by K"(w,-), i.e.: for any

fe€r(W) we have
Ou(f) = jw £ (Yo' )7 (, 'l

The same result holds for the unitary case. Moreover, we may let F' be a product of fields and
the same result holds.

Proof. The proof is along the same line as the proof of Harish-Chandra of the representability
of Fourier transform of orbital integrals ([29, Lemma 1.19, pp.12]). With the local trace
formula Theorem 4.6, it remains to note that the Howe’s finiteness conjecture holds for the
H-action on W, by [19, Theorem 6.1]. In the next two subsections we will prove a more
explicit result when 7 is nontrivial quadratic. O
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Obviously the kernel function k"(w,w’) can be viewed as a locally constant function on
Wis X Wy invariant under H x H.

Remark 13. Unfortunately, the Howe’s finiteness conjecture (cf. [19, Theorem 6.1]) fails for
the H-action on gl,, x F,, x F™ when n > 2. Therefore the proof of Harish-Chandra ([29]) does
not work and the representability of the Fourier transform of H-orbital integral remains open
when n > 2.

4.2 A Davenport—Hasse type relation

We show a Davenport—Hasse type relation between two “Kloosterman sums”. It will be used
to show that the Fourier transforms perserve smooth transfer when n = 1.

Local constants. We first recall the definition and some basic properties of the Langlands
constant ([1, §29, §30]). Fix a non-trivial character ¢ of F'. For a field extension K /F' of local
fields, we define a character of K by g = ¢ otrg p. Let 1x be the trivial character of the
Weil group Wi . Then the Langlands constant is defined to be

6(]:nC]'I(/FlI{7 S, w)

4.12 A = ,
( ) K/F(d}) 6(1[(, s, d)K)
which is a constant independent of s ([, §30]). In particular, it is given by

The character of the abelianization Wl‘}b ~ >

(4.14) NK/F = det(IndK/FlK)

is a quadratic character. For a € F* we denote by 1), the character of F' defined by 1, (z) =
Y(ax). We then have

AK/F(%Z)a) = WK/F(G))\K/FW)~
Moreover we have
Aic/r(¥)? = g p(—1).

In particular, Ag/p(¢)) € 14 is a fourth root of unity.

We first show that the epsilon factor is essentially a Gauss sum. Let ¢ be a nontrivial
additive character and dx be the self-dual measure on F'. We choose a Haar measure d*x = %
on F*. For a quasi-character y of F'*, we may define its real exponent Re() to be the unique
real number 7 such that |x(z)| = |z|" for all x € F*. We denote X = x| - |. Let v(x,) be

the gamma factor in Tate’s thesis ([4, §23]).

Lemma 4.8. The gamma factor v(x,v) as a meromorphic function of x (namely, its value
at x| - |° is meromorphic for s € C) is given by

(4.15) ved) = [ @r@ ™

Fx |z|

- [ vent@ys,
F
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Here the right hand side is interpreted as

s
J o R o

for any C' large enough. In particular, the gamma factor v(x, 1) is holomorphic when Re(x) <
1 and its value is given by an absolutely convergent integral

06 ) = f Py (@) de

lz|<C
when C' large enough.

Proof. By definition, we have (][4, §23])

Y(x, ) =

Note that it does not depend on the choice of any Haar measure on F'*. We have chosen ‘dﬁ.

Let f, = 111@n0,. Then we have

Fa(@) = ¥(@)Tono, (@) = (@)@ 1o, (zw").

If n is larger than the conductor of y, we have

C(frny x) = |w|"vol(OF).

Let m be the integer such that 1o, = vol(OF) - l-me,- Then we have

(B = [ vt o))
= vol(OF)lwl”f o w(a:)g(x)“ﬁ.

The right hand side is interpreted in the sense of analytic continuation. Therefore we have for
n large enough:

) = [ w@R@E

This completes the proof.
O

Kloosterman sums. We have some Kloosterman sums. Let E/F be a (genuine) quadratic
field extension. Our first Kloosterman sum is defined for a = AA € NE*:

(4.16) ®(a) = @pyp() i= | n(An)d s
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The measure on E? is chosen such that for all ¢ € €°(E):

dX
| ecof = | stanataa
B (Xle  Jp<Jm
where NA = a and dX is the self-dual measure on FE with respect to the character ¥ g.
Our second Kloosterman sum is defined for a € F*:

a
(4.17) V(a) = VYg/p(a) = . Yz + ;)W(f)dX% N =g/
The right hand side is interpreted as
(4.18) f bz + S)n(a)d
1/C<|z|<C Z

for sufficiently large C' (depending on a). Note that this integral becomes a constant when C
is large enough.
We also define some auxiliary functions on F'* indexed by C € R:

(4.19) Wola) i J| s MY, e
al/C<|y|<

We set Wy, = W. It is clear that, as C' — o0, the functions W converge to Wy, pointwisely.

Lemma 4.9. The function ¥ (possibly C = o0) is a locally constant function on F*. More-
over, there are constants [, B2 independent of C' € R u {0} such that

[We(a)] < fifloglal| + B2
for all a € F*.

Proof. Let B be such that 1 (x) = 1 if and only if |z| < B. If |a| < B2, either |z| < B or
la/z| < B. So we may bound the integral (4.18) by
_l’_

Y(a/z)n(z)d > (x)n(x)d x| .

jx|<B,|a/C<|x<C J|x|>B,|a/C<x|<C

Since 1) is oscillating when |z| = B, it is easy to see that the second term is bounded above
by a constant independent of @ and C'. The first term is equal to

P(x)n(x)d

J|:L‘>a/B,|a/C<x<C’

< Y(z)n(x)d™ x| + (z)n(z)d” z|.

f|:c|ZB,|a/C<|x<C

L/B<|x<B7|a|/C’<x|<C

The first term of the last line is at most

f 1d*x,
a/B<|z|<B

which is of the form f1]log |a| + (2 for some constants (1, 2. Now, possibly enlarging 2 by
a constant independent of a and C, we complete the proof.

O]
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We now study the asymptotic behavior of ¥¢(a) and ®(a) when |a| is large.

Lemma 4.10. There is constants A and o independent of C € R u {0} such that when
la] > A, we have
[We(a)| < ala| ™, [@(a)] < afal V1.

Proof. The proof follows the strategy of [57, Proposition VIII.1]. We only prove the case for
W since the same proof with simple modification also applies to ®.

Denote by v : F* — Z the valuation on F. We may choose a constant ¢ such that whenever
m = ¢, the exponential map

w"Op — F*

4
t_ Z
=20

=0

converges and we have for t € @™ Op:
t —t
(%) v(E——1) = v(t?/2).
v(5=—) = v(t).

Let K., be the image of @w™Op. It is easy to see that K,, = 1 + @w™Op. Let d be the
conductor of ¥, i.e.: Y(x) =1 if v(z) < d and ¢(x) # 1 for some z € F with v(z) =d — 1.
Now we choose £ € Z such that

(#x) ¢ > 4c — 2d + 10.

Now assume that v(a) < —¢. To explain the idea, we first claim that when v(a) < —¢,
Ueo(a) = 0 unless a € (F*)2. To see this, suppose that a is not a square. Then we have
la/z + x| = max{|z|, |a/z[} > |a['/* and

(4.20) Uo(a) = Z J Y(ax™ + z)n(x)d” =
v(a/C)<i<uv(C) YU(@)=1

Where we understand v(C) = —log, C, where ¢ = #Op/(w). For a fixed i, let n > ¢ be such
that
n + min{i, v(a) — i} < d < 2n + min{i, v(a) — i}.

Such n exists due to (#x). Then we have a nontrivial character of w"Op defined by:
t p(azr et + zeh))n(x)
=p((az™t — 2)t + (az™t + 2)t2/2 + ..)n(z)
=9((az™! — )t)n(z).
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Hence in (4.20) the integral over v(xz) = i can be broken into a sum of integrals over x K,
where x runs over w'Op/K,. Using the exponential map, each term is of the form:

||t L{ Y(ax kT + xk)n(x)d k

=zt f Y(ax e + xet))n(x)dt
—|z| " 'n(x)p((az™" — z)t)dt = 0.

This completes the proof the claim.
Now we may assume that a = b? is a square. A change of variable yields:

(4.21) Uo(a) =7 Yz~ + z))n(x)d .

o |
|b/C|<a<|C/b]
For a fixed x, we look for an integer n such that

n+v(b) +v(z -2t <d,
2n 4+ v(b) > d.

For example we may take n = 1+[(d—wv(b))/2] > ¢ (due to (x*)). Then the condition becomes:

(#%%) vz—z1)<d—1—0v(b)—[(d—v(b)/2] =[(d—1-uv(b))/2].

If this last inequality holds, we have v(zk — 27 'k~!) = v(z — 27 1) for k € K,,: this is obvious
if v(z) # 0; if v(x) = 0, then the difference

(z—az H—(@wk—2 k) =21 —k)1+2 2%

has valuation at least v(1 — k) = n > v(z — z~!). In particular, for those x satisfying (* * *),
we may write the integral in (4.21) as a disjoint union of the form

Therefore, we have proved that the only possible non-zero contribution comes from those x
violating (# # #). In particular, |¥¢(a)| is bounded by the volume of x such that v(z —271) >
[(d —1—wv(b))/2]. It is easy to see that the volume is bounded by «a|b|~%?| = ala|~'/* for
some constant « independent of C.

O

Remark 14. Just like [57, Proposition VIII.1], the same argument in the proof above actually
yields a formula of ¥(a) and ®(a) for large a.
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A Davenport—Hasse type relation. We first establish one more lemma.

Lemma 4.11. When 3 < Re(x) < 1, we have

e L ¥(a)x " (a)da,

where the integral converges absolutely. Similarly, when % < Re(x) < 1 we have
e ) = | wlap @da
Proof. By Lemma 4.8, we have for C' large enough

YOG )Y (xn, ) = J

w<x>>z<x>dXxf b)) d*y.
|x|<C

|z|<C

This is equal to

j bz + )R Ey)nly)d zdy
|z],|ly|<C

- f O v(afy + y)n(y)dxy> R(a)d*a
Fx \Jjal/c<lyl<c
:j s Ue(a)d*a.

The function |®¢c(a)| is bounded by fi]log |a|| + B2 when a is small by Lemma 4.9 and
bounded by a\a|1/ 4 when a is large by Lemma 4.10. The first result now follows from Lebesgue’s
dominance convergence theorem. Similarly, the second result follows from the fact that |®(a)|
is bounded by a constant when |a| is small, and by a|a|'/* when |a| is large. O

The Davenport—Hasse type relation alluded in the title is as follows.

Theorem 4.12. We have for all a € F*:

U(a) = q)(a))\E/F(W'

Proof. Note that L(Indg,plk,s) = L(1k,s). Thus we have an equivalent form of the Lang-
lands constant by (4.12):
Y(Indg/rlK, s, )

Yk s, ¥K)

Now let K = E. Then for all characters x of F'* such that % < Re(x) < 1, we have by Lemma
4.11:

Ar/r(Y) =

[ von @ =) | @@
F F

Both integrals converge absolutely. The theorem now follows easily. O
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4.3 A property under base change

For later use we need a property of the Langlands constant (4.12) under base change. If
K = Ki x Ky x ... x Ky, we define A\g/p(1) as the product [[%; Ag, /(). Similarly,
e(Indg/pli, 1/2,9) is by definition [[;2; e(Indg, /plk,,1/2,%). Recall that for an arbitrary
field extension K/F of degree d, we may define a discriminant 6 /p € F*/(F )2 as follows.
Choose an F-basis ay, ..., ag of K and let o1, ...,04 be all F-embeddings of K into an algebraic
closure of F'. Then it is easy to see that

(4.22) det(Uj(ai))%si,de e F”.

And if we change the F-basis, this only changes by a square in F'*. So we define dx/p to be
the class in F'*/(F*)? of the determinant (4.22). If K = F(a) and a has minimal polynomial
[, then 0x/p is the class of the discriminant of the polynomial f. In particular, in this case

we can choose a representative of dx/p such that it lies in (—1)d(d*1)/ Ny /pK*. Finally, for
a quadratic character n of F'*, it makes sense to evaluate 1(dx /7). We extend the definition
in the evident way to a product of fields K = K1 x Ko X ... x K.

The property we need is the following.

Theorem 4.13. Let E/F be a quadratic field extension and let F'/F be a field extension of
degree d. Let E' = E®p F'. Then we have

(4.23) App (VE) = Ny p(Or)nE/p (55 7).

Proof. First of all we have the following simple observation. If we replace ¢ by ., a € F*,
the right hand side of (4.23) changes by a factor nE/F(a)d and the left hand side of (4.23)

changes by a factor ng//p(a) = ng/p(Np/pa) = nE/F(ad). Therefore it suffices to prove the
identity for any one choice of .
Note that (4.23) is equivalent to

emrr, 1/2,0p) = e(p/r, 1/2,98)  0p/p (65 5).
Lemma 4.14. If E/F is unramified, then (/.23) holds.

Proof. We may choose 9 to have conductor equal to zero. Since ng/p is unramified, we have

e(ng/r1/2,¢r) = 1.

Now ¢ has conductor denoted by k which is equal to the valuation of the different Dp/p,
namely Dp//p = (wwp)F. Let e be the ramification index and f = d/e.

Case I: f is even. Then E c F' is a subfield. In particular, Np/ pF"* < Ng/pE*. In
this case, the left hand side of (4.23) is equal to 1 as ngs/p is trivial. As we may choose a
representative of dp//p in (—1)d(d_1)/2NK/FKX < Ng/pE™, we see that ng/p(0p/p) = 1

Case II: f is odd. Then e(ng/p,1/2,9r) = (—1)*. Note that Np/p(wp) € (wp) OF.
So we have Np//pDpi/p = (wwr)kf. Since f is odd, kf and k have the same parity. Since
the valuation of Np//pDp/p has the same parity as the valuation of dp//p, we see that
ne/F(0p F) = (—1D)k = (=1)* as desired. O
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Lemma 4.15. If E/F is archimedean, then (4.23) holds.

Proof. The case F' = C is obvious. Now we assume that ' = R and F = C. Then the only
non-trivial case we need to consider is when F’ = C. Then the left hand side is equal to one.
For the right hand side, we have

Agr()? = ng/p(—1) = —1.

And
UE/F(DF'/F) =—-L
This completes the proof. ]

We now treat the general case for E/F. We use a global argument. To do so we want to
globalize the quadratic extension E/F. We use the following lemma from [15, §14].

Lemma 4.16. Let E/F be a quadratic extension of non-archimedean local fields. Then there
exists a totally real number field F with F' as its completion at a place vg of F, and a quadratic
totally 1maginary extension € of F with corresponding completion E at vy such that &€ s
unramified over F at all finite places different from vg.

Since the global epsilon factor satisfies

E(Il’ldg/]:lg, S, ¢.7'-) = 6(157 S, w&‘)v

we have a product formula

[[Aen/m (W) =1,

where &, is a product of field extensions of F, and v runs over all places of F. We choose
a finite extension F’ of F such that v is inert and F;, ~ F’. Such choice obviously exists.
Then it is clear that (4.23) holds for all &,/F, at those v # vg. By the global identity and
[ 1, ne,/7,(0F/F) = 1, we immediate deduce (4.23) at the place vg. This completes the proof
of Theorem 4.13. O

4.4 All Fourier transforms preserve transfer

Now we need to consider simultaneously the general linear case and the unitary case. Let
E/F be a fixed quadratic field extension. We set up some notations. We will use 1V’ to denote
gl (F) x F™ x F,. There are two isomorphism classes of Hermitian spaces of dimension n,
which we will denote by W7, Wy respectively. Then we let V; denote S(W;) x W; for i = 1,2.

Note that we have an obvious way to match the partial Fourier transforms on V' and V.
Recall that all Haar measures to define Fourier transform are chosen to be self-dual.

Theorem 4.17. For any a fixed Fourier transform F, there exists a constant v € uy depending
only onn,, E/F and the Fourier transform F with the following property: if f € €°(V) and
the pair (f; € €.°(Vi))i=1,2 are smooth transfer of each other, so are vF(f) and (F(f;))i=1,2-

Proof. We now let F, (Fp, Fe, resp.) be the Fourier transform with respect to the total space
(the subspace U(WW), W, resp.). Consider the following three statements:
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e A,: Forall E/F, ¢, and W; of dimension n, there is a constant v € u4 with the property:
if fe€* (V) and f; € €*(V;) (i = 1,2) match, then so do vF,(f) and Fu(f;).

e B,: For all E/F, ¢, and W; of dimension n, there is a constant v € u4 with the property:
if fe€X (V') and f; € €F(V;) (i = 1,2) match, then so do vF(f) and Fp(f;).

e C,: For all E/F, ¢, and W; of dimension n, if f € €X(V') and f; € €° (Vi) (i = 1,2)
match, then so do A\g/p(¢) ™" Fe(f) and Fe(fi).

The theorem follows immediately if we prove the following three claims:
1. A,_1 = B,,.

2. C1 = C,,.

3. B,+C,= A,.

The proofs the three claims are provided below in Lemma 4.18, 4.19, 4.21, respectively.

Lemma 4.18. A,,_1 = B,.

Proof. We now use f to denote the Fourier transforms with respect to gl,, and $(W'). We first
consider the general linear side. We let W = F,, x F™ and consider it as an F' x F-module
of rank n with the Hermitian form (w,w) = wv if w = (u,v) € F,, x F". We also denote the
normalized orbital integral

(4.24) 0% ,(f) = w(X, w)Oxw(f), (X,w)eV,

where w(X, w) is the transfer factor (3.7), and Ox ., (f) is defined by (4.5).
By the local trace formula Theorem 4.6, for w € W with (w,w) # 0, f € € (V') and
g€ € (gl,(F)), we have:

~

(4.25) f O% o (Nw(X, w)g(X)dX = O% o (Nw(X, w)g(X)dX.

aln (F) aln (F)
Let (w)! be the orthogonal complement of (F' x F)w in W. Up to the H = GL, p-action,
we may choose w of the form (e, de’) where e = (0, ...,0,1) and d € F* is the Hermitian norm
(w,w). Then the stabilizer of w in H can be identified with GL,,_; p (with the embedding
into GLy, r as before). If h € GL,—1(F), we have O%  (f) = O},L,wh(f) = O?{h,w(f)' Then
we may rewrite the left hand side of (4.25) as

| ot peugax = [ o) (f “’(xh,mg(xh)dh) 4a(X),
gln(F) QF) GLn—1(F)

where Q,—1 = gl,,/GL,—1, ¢ is the quotient morphism and the measure is a suitable one on
Q(F) such that for all g € €.° (gl (F)):

f g(X)dXzJ <J g(Xh)dh> dq(X).
gl (F) Q(F) \JGL,_1(F)
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Note that w(X", w) = n(h)w(X,w) for h € GL,_1(F). Now it is easy to see that when we
restrict the transfer factor w(X,w) to X € gl,, it is a constant multiple of the transfer factor
we have used to define the GL,,_; p-orbital integral. Moreover, this constant depends only on
w and is denoted by c¢,,. So we have

| e g = w(Xow) | (X = .04 ().
GLn_1(F) GLn_1(F)

Then this depends only on the GL,,_1(F)-orbit of X.

We have a similar result for the right hand side of (4.25). The constant ¢, is then canceled.
Replacing g by g, we deduce from (4.25) that
(4.20 | Ook.nOk@adax) = [ 0% (0% ()dalx).

Q(F) Q(F)

Note that the Fourier transform here is F;, for GL,-action on V' but it is the F, for the
GL,,_1-action on gl,.

In the unitary case we also have a similar equality for i = 1,2 (without the issue of transfer
factors)

| Oxul90x(@)da(x) = | Oxu(F)Ox(s)da(X).
Q(F) QF)
Here the stabilizer of w in (V) replaces GL,,—1 r. Note that we have identified the categorical

quotient ) with @); as before.
Now suppose that f < (f;). We want to show that for some constant v:

(4.27) VO_T)](OﬂUO (f) = OXZQ,in (J?z)

for any strongly regular semisimple (X% w?) < (X? w). This would imply the equality for
all matching regular semisimple elements by the local constancy of orbital integrals (Lemma
3.12).

We may choose g <> (g;) such that

e Both are supported in the regular semisimple locus.

e There exists a small (open and compact) neighborhood U of ¢(X?) € Q(F) with the
following property: (1) the functions on U given by ¢(X) — O ,(f) and ¢(X;) —

Ox, w0 (ﬁ) are constant; (2) the functions on Q(F) given by ¢(X) — O%(g) and ¢(X;) —
Ox (g;) are the characteristic function 1.

This is clearly possible by Lemma 3.12. For such a choice we have

[, 0% s 0% @) = O ) ([ da(0)) i =12
Now by A,_1, we have for some constant v independent of g, g;
vO%(9) = Ox,(G:)

whenever X « X;. Now the desired equality (4.27) follows immediately for the same constant
v as in A,_1. This proves that A,_1 = B,. ]
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Lemma 4.19. C; < C,.

Proof. 1t suffices to show C1 = C),. Now we will use f to denote the Fourier transform with
respect to W = F,, x F™ and W; respectively. We want to show that if f and f; match, then
for strongly regular (X, w) < (Xj;,w;), we have

(4'28) AE/F(ZD)"O?(,w(f) = OX,',M(fi)'
For a regular semisimple X € gl,,(F'), let T' be the centralizer of X in H and t its Lie algebra.
Then T is isomorphic to [ [; F;* for some field extensions Fj/F of degree n; with >7%_; n; = n.
For a regular semisimple X; € $(W;), let T; be the centralizer of X; in H; and ¢t; its Lie
algebra. Let F; = F ®p Fj. As X, X; have the same characteristic polynomial, we know
that T; is isomorphic to Hj Resp, /FEJ1 for the same tuple of field extensions Fj;/F. Here
E! is the kernel (as an algebraic group) of norm homomorphism N g/pt B — F*. Let
F' =11, Fj, E' :== F'®r E. By [3, §5], W is a rank one Hermitian space over E’ with unitary
group U(W, E'/F') ~ T. We may identify F’ with the sub-algebra F[X] c gl,,.

For a more intrinsic exposition, we let M (M™, resp.) denote F,, (F", resp.) and gl, =
End(M). We may describe the transfer factor as follows:

un Xun X2u.. A X"y

wo

o) =

where wy a fixed generator of the F-line A%mM. If we change the generator wy, the transfer
factor only changes by a constant in {+1}.

Then under the action of F/ = F[X], M is a free F’-module of rank one. In this way,
M* = Homp(M, F) is canonically isomorphic to Hompg (M, F’). Indeed, we may define an
F'-linear pairing (-,-)pr : M x M* — F’ such that for all \e F', 2z € M,y € M* we have

>,X€End(M),u€M,veM*,

trp p(AT, y)pr = (A, y) F-
Fixing a generator of AL, M ~ F’ we define a transfer factor w(w) € {£1} corresponding to
the case n = 1. We also have a compatibility ng/p(Np//pz) = ng/p(7) and Np/pz = det(x)
when z € F' = F[X].
We then have an inversion formula as follows.

Lemma 4.20. For a regular semisimple X € gl,(F) with centralizer T ~ []; Resg,/jpGLy,
let ®"(w,w") be the locally constant T x T-invariant function on Wy.s x Wy.s — C given by
Corollary 4.7. Then we have

67)7(“,(]0) =ng/r(0p ) F) jQ(F') O;I(’w,(f)ﬁ"(w, w')dg(w'),
where Q = (M x M*)/Resp/pGLy.

Proof. Without loss of generality, we may assume that f = ¢ ® ¢, ¢ € €F(gl(F)), ¢ €
€ (M x M*). We now see that the orbital integral can be rewritten as

0% w(0® %) = w(X, w)/w(w) o S(X")n(h)OL("@)dh

= w(X,w)fw(w) | S(X")n(h)OL(Fp)dh,
T\H
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where we write "o (w) = p(wh ).
By Corollary 4.7, we have

(4.29) OUP) = | OLpI G ()

Reversing the argument we obtain

O% (0 ® ) = w(X, w)w(w) JQ(F/) w(X, w)w(uw)O% (¢ @ @)K (w, w')dg(w').

It is easy to verify that
W(X7 w)w(X, ’IU/) = 7’]((5)()&)(11])0)(11],),

where 0(X) is the discriminant of the characteristic polynomial of X. In particular, n(dx) =
n(0p//r). Note that the product w(X,w)w(X,w’) (w(w)w(w'), resp.) does not depend on the
choice of the generator of the F-line A%%M (the F’-line A},,M = M, resp.). This completes
the proof.

O

Similarly we also have an inversion formula in the unitary case with a different kernel
function denoted by k;(w;,w}). Finally we note that the kernel functions are given by the
Kloosterman sums relative to E’/F’. By Theorem 4.12, we have

(4.30) &N w,w') = Mgy (V) ki (wi, wy)

whenever w < w; and W’ « w}, i =1,2.

Now the proof of C; = (), follows from the inversion formulae, the relation between the
kernel functions (4.30) and the base change property of the Langlands constant (Theorem
4.13):

Apyp(Vpr) = Ngp(Vr)n(r F).

O

Remark 15. It is easy to see that for fixed X, X;, the statement C; implies that, up to a constant
multiple, the partial Fourier transform have matching orbital integrals for those elements with
first components X, X;. The lengthy computation of the Davenport—Hasse relations is to show
that this constant, a priori depending on X, X;, is indeed independent of the choice of X, X;.

Lemma 4.21. B, + C,, = A,.

Proof. This is obvious since F, = FpFe. ]
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4.5 Completion of the proof of Theorem 2.6

In §3, we have reduced the existence of transfer on groups to the Lie algebra version: by
Theorem 3.3, it suffices to show Conjecture &,41. Obviously, Conjecture &,,+1 is equivalent
to the corresponding assertion on the following subspaces:

sl, x B, x I

and for Hermitian W;, ¢ = 1, 2:

Here sl,, (s4l(W;), resp.) denotes the subspace of gl,, (4(W;), resp.) of trace-zero elements.
We let V be either sl,(F) x F™ x F,, or st(W;) x W; and let n be the quadratic character
associated to E/F in the former case and the trivial character in the latter. For a distribution
T on V, we denote by ZIAW, YA’W, THUW) the three partial Fourier transforms respectively. Similar
notation applies to functions f on V.
The following homogeneity result enables us to deduce the existence of transfer from the
compatibility with Fourier transform.

Theorem 4.22 (Aizenbud). There is no distribution T on V satisfying both of the following
properties

(1) T is (H,n)-invariant (hence so is T).
(2) T, fv, fW’ THY) are all supported in the nilpotent cone N .

Proof. This is proved in [!, Theorem 6.2.1] for the case n = 1. But the same proof goes

through for the nontrivial quadratic 7.
O

Corollary 4.23. Set
6o = nrKer(T) < €°(V),

where T' runs over all (H,n)-invariant distributions on V. Then the space €.°(V) is the sum
of €y and the image of all Fourier transforms of €*(V — N'). Equivalently, any f € € (V)
can be written as

f=f0+f1+g+gy+ﬁf(w)7

where fo € 6o, fi € €V —N),i=1,2,3.

Proof. Let € be the subspace spanned by %, and the image of all Fourier transforms of
€F(V — N). If the quotient L = €*(V)/% is not trivial, then there must exist a nontrivial
linear functional on L. This induces a nonzero distribution 7" on V. As T is zero on %y,
T is (H,n)-invariant. As T is zero on € °(V — N), it is supported on N. Similarly, all

Fourier transforms j;V’ IA“W, TUW) are (H,n)-invariant and supported on A. This contradicts
Theorem 4.22. ]

Finally we return to prove Theorem 2.6.
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Proof. By abuse of notation, we still denote by @ = A?" the categorical quotient of V by
H. By the localization principle Proposition 3.8, it is enough to prove the existence of local
transfers at all z € Q(F') (not necessarily regular semisimple elements). We will prove this
by induction on n. If z € Q(F') is non-zero, the stabilizer of z is strictly smaller than H. By
Proposition 3.16, the local transfer around z is implied by the local transfer around 0 for the
sliced representations. The sliced representations are (possibly a product) of the same type
with smaller dimension (with possibly a base change of the base field F'). Then by induction
hypothesis, we may assume the existence of local transfers at all non-zero semisimple z € Q(F').
Therefore, by the localization principle Proposition 3.8 (or, what its proof shows), we know
the existence of smooth transfer for functions supported away from the nilpotent cone. By
Theorem 4.17 on the compatibility with Fourier transforms, this implies the existence of
smooth transfer for functions f where f is supported away from the nilpotent cone and f is
one of the three Fourier transforms. By Corollary 4.23, we have proved the existence of smooth
transfer for all functions f (those in Vj clearly admit smooth transfers). This completes the
proof of Theorem 2.6. 0
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A Spherical characters for a strongly tempered pair.
By Atsushi Ichino and Wei Zhang

Let F' be a non-archimedean local field. We consider a pair (G, H) where G is a reductive
group and H is a subgroup. We will also denote by G, H the sets of F-points. We will assume
that H a spherical subgroup in the sense that X := G/H with the G-action from left is a
spherical variety. Following [54, sec. 6], we say that the pair (G, H) is strongly tempered if for
any tempered unitary representation m of G, and any u, v € 7, the associated matrix coefficient
Guw(g) := {m(g)u,v) ({-,-) is the Hermitian G-invaraint inner product) satisfies

Guo|r € L*(H).

To check whether a pair (G, H) is strongly tempered, one uses the Harish-Chandra function
=Z. Let mg be the normalized induction of the trivial representation of a Borel B of G and let
v be the unique spherical vector such that (vg,vg) = 1. Then = is the matrix coefficient:

Z(g) = {gvo, vo)-

We have Z(g) = 0 for any g € G. Then (G, H) is strongly tempered if Z|y € L'(H).
The major examples are those appearing in the Gan—Gross—Prasad conjecture:

e Let V be an orthogonal space of dimension n + 1 and W a codimension one subspace
(both non-degenerate). Let SO(V') and SO(W) be the corresponding special orthogonal
groups. Let G = SO(W) x SO(V), and let H < G be the graph of the embedding
SO(W) — SO(V) induced by W — V.

e G = GL, x GL,41, H is the graph of the embedding of GL,, — GL,.1 given by
g — diag(g, 1).

e Let E//F be a quadratic extension of fields. Let V be a Hermitian space of dimension
n + 1 and W a codimension one subspace (both non-degenerate). Let U(V') and U(W)
the corresponding unitary groups. Let G = U(W) x U(V), and let H c G be the graph
of the embedding U(W) — U(V) induced by W «— V.

A proof of the fact that these pair (G, H) are strongly tempered can be found in [31] for the
orthogonal case and [20] for the linear and unitary cases.

Assume that (G, H) are strongly tempered. Then for any tempered representation 7 of G,
following [31] we may define a matrix coefficient integration

D, v) = fH<7r(h)u,v>dh.

Obviously v € Hompy (7 ® 7, C). The integral is absolutely convergent by the strong tem-
peredness.

The following is a conjecture of Ichino—Ikeda in their refinement of the Gan—Gross—Prasad
conjecture.

2 Atsushi Ichino: Department of Mathematics, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Ky-
oto 606-8502, Japan. Email: ichino@math.kyoto-u.ac.jp
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Theorem A.1 (Sakellaridis—Venkatesh,[51]). Assume that (G, H) is strongly tempered and
X = G/H is wavefront. Let w be an irreducible representation. Assume that 7 is a discrete
series representation or m = Indg(a) for a discrete series representation o of the Levi of a
parabolic subgroup P. Then Hompy (7, C) # 0 if and only if v does not vanish identically.

The result is also proved in the orthogonal case by Waldspurger.
For the rest of the appendix, let m be a tempered representation. We further assume that

dim Homg(m, C) < 1.

All the examples we list earlier satisfies this condition.
Let ¢ € Homp(w,C). Then we define a spherical character associated to ¢ to be a distri-
bution on G such that

Oro(f) = D, Ur(f)o)l(v), [ebr(G),

veB()

where B(w) is an orthonormal basis of 7. The distribution is bi-H-invariant for the left and
right translation by H. Obviously the distribution 6 ¢ is non-zero if and only if the linear
functional ¢ is non-zero.

This note is to prove the following:

Theorem A.2. Assume that £ # 0. Fiz any open dense subset G, of G. Then the restriction
of the distribution 0., to G, is non-zero. Equivalently, there exists f € €.°(Gy) such that
Hﬂl:‘e(f) # 0'

We make some preparation first. By Theorem of Sakellaridis—Venkatesh above, there exist
v € 7 such that

l(v) = JH<7T(h)v, voydh, vET.

Lemma A.3. For all f € €°(G), we have

ot = [ | ( [ f(g)<1>(h2gh1)dg> dhydh,

where

(Al) q)(g) = <7T(9)U0>U0>, ge G.

Proof. The proof is analogous to that of [16, Thm. 6.1]. We may rewrite 6 as

Ore(f) = D Ux(fHv)(v)

veB(m)

> )JH<U,7T(f*)7r(h1)v0>dh JH<7r(h1)v0,v>dh.

veB(m
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By ¢ = Zveg(ﬂ)<¢,v>v for any ¢ € m, we have

= 3 [, [r0mmntrmtg

veB(m

_ JH JH ( L f(g)<7r(hggh1)vo,vo>dg> dhydhs.

We consider the orbital integral of the matrix coefficient ® as in Lemma A.3:

(A.2) O(g, (13) = JH JH @(hlghg)dhldhg,

as well as the orbital integral O(g, Z) of the Harish-Chandra function Z. The following lemma
shows that the integral (A.2) converges for all but a measure-zero set of g € G.

Lemma A.4. The function g — O(g,Z) on G is locally L*. Equivalently, for any f € €*(Q),
the following integral is absolutely convergent

| @021 < .

Proof. Consider a special maximal compact open subgroup K of G such that we have the
following relation for a suitable measure on K:

(A.3) fK S(gkq')dk = Z(g)2(g)-

Such K exists ([53]). Without loss of generality, we may assume that f is the characteristic
function of KgK for some g € G. We then have

f !f(g)O(g,E)ldg=J f f J Z(h1k1gkaho)dhidhodkdks.
G KJKJHJH

By (A.3) this is equal to
(J f E(h1k1g)dh1dk1) (f E(hg)dhz).
K JH H

By (A.3) again, we obtain

=(g) (JHE(hl)dm) (JH E(h2)dh2> <o

By Fubini theorem, this shows

| 1r@0.2)1dg <.
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Lemma A.5. Let ® be the matriz coefficient in (A.1). The function g — O(g,®) on G is
locally L' and for any f € €*(G), we have

= Lf(g)O

Proof. For any tempered representation 7 of G and a matrix coefficient ¢, , associated to
u,v € , we have

Puv(9)l < c=(9), g€G

for some constant ¢ > 0. By Lemma A.4, the function g — f(g)O(g,Z) is in L'(G). In
particular, this implies that the triple integral

f j J |f(9)|E(haghi)dhidhadg

is absolutely convergent. By Fubini theorem we may interchange the order of integration in
the following:

f f J F(9)®(haghy dh1dh2dg—f f (J 1o h2gh1)dg> i,

This is equal to 0, ¢(f) by Lemma A.3. O

Now we return to prove Theorem A.2. Since 6, is non-zero, there exists f € €°(G) such
that

Qﬁ’g(f) # 0.
Equivalently, by Lemma A.5,

j f(g ®)dg # 0.
As G, is open and dense, we may choose f,, € €.°(G,), such that point-wisely on G, we have
lim f, = f.
n—aoo

Without loss of generality, we may assume that f > 0 point-wisely and f— f,, = 0 point-wisely.
Then we have

(F(9) = fn(9))O(g, ®)| < 2f(9)|O(g, ®)|

which is integrable on G by Lemma A.4. By Lebesgue’s dominated convergence theorem, we
have

lim | (f(g9) — fn(9))O(g, ®)dg = 0.

n—aoo0 G

Since §, f(9)O(g, ®)dg # 0, we have for n large enough,

an B)dg # 0,

or equivalently,
ew,f(fn) # 0.
As f, € €7 (G,), this completes the proof of Theorem A.2.
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Remark 16. When comparing with the property of the usual character as established by
Harish-Chandra, some questions remain for the spherical characters in this notes. For example,
is the function g — O(g, ®) continuous or even locally constant on an open dense subset? If
7 is super-cuspidal, one may prove that the function g — O(g, ®) is locally constant on some
open dense subset in the unitary case listed in the examples.

B Explicit étale Luna slices

In this appendix, we construct étale Luna slices explicitly (Theorem B.5). We will first describe
the sliced representations at a semisimple element of & or $(V). Then we exhibit an étale
Luna slice at . Some of the key construction is already in [51]. But we need to show that
their construction actually gives étale Luna slices. The steps are close to the Harish-Chandra’s
descent method (cf. [10]).

Sliced representations at semisimple elements. We start with (V) where V =W @
Eu. It suffices to consider (W) x W. We may write an element in $(WW) x W as (X, w),
X e U(W),w € W. Denote by W the subspace of W generated by X'w,i > 0. By [51,
Theorem 17.2], for (X,w) to be semisimple, it is necessary that Wy is a non-degenerate
subspace. In this case, we have an orthogonal decomposition W = W; @ W5. Then X
stabilizes both subspaces and we may write X = diag[X;, Xo] for X; € (W;). Then (X, w)
is semisimple if and only if X5 is semisimple (in the usual sense) in U(Ws). It is also self-
evident that (X2, w) defines a regular semisimple element relative to the action of U(W3) on
U(W3) x Wy, Then the stabilizer of (X, w) is isomorphic to U(W7)x,, the stabilizer of X;
under the action of U(W7). It is a product of the restriction of scaler of unitary group of
lower dimension over an extension of F' (including the general linear group). Let U(WW7)x,
be the respective Lie algebra. Then U(W7)x, acts on U(W7)x, x Wi. This representation of
U(W1)x, is a product of representations of the same type (including the general linear case).
The sliced representation at x is then isomorphic to the product of the above representation
of U(W1)x, on U(W7)x, x Wi and the representation of the trivial group on the normal space
at (X2, w) of U(Ws)-orbit of (Xa,w) in H(Wa) x Wa.

We have a similar description for &,, (cf. [51], [3]). Indeed we consider an equivalent
version: the restriction of the adjoint action of GL,, 11 F on gl,41 F to GL, 7. We describe the
general form of a semisimple element in the Lie algebra gl,41 7. Let

X
(B.1) T = <v Z) , Xeghr,

where u € F™,v € F,, and we use F" (F), resp.) to denote the n-dimensional space of column
(row, resp.) vectors. There is an obvious pairing between F" and F),. Let Uz be the subspace
of F™ spanned by u, Xu, ..., X"u and similarly V5 the subspace of F,, spanned by v, v X, ..., v X™.
And let V; := Us- < F, (Uy := V5", resp.) be the orthogonal complement of Us (Va, resp.).
Then for z to be semisimple, it is necessary that F,, (F™, resp.) is the direct sum of U2l and
Vs (V2l and Us, resp.). Assuming this, according to the decomposition F" = U; @ Us, we may
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X1 X2
0 Xo
sufficient that X1; € End(U;) is semisimple in the usual sense and X5 = 0.

write X = ( ) . Then by [51, §8], for such z to be semisimple, it is necessary and

Some auxiliary construction. Now we construct étale Luna slices for semisimple elements.
As we shall see, the general case is basically a composition of two extreme cases:

1) the case w = 0 (namely, 7 = 0 minimal),
2) the case z = (X, w) is regular semisimple (namely, r = 0 maximal).

The first case is essentially the same as the classical case (the Luna slice for the adjoint
representation, cf. [10, §14]). For the second case we have to resort to the existence theorem
of Luna. The general case can be reduced to those two basic cases.

We first describe a locally closed subvariety of z = (X, w) following [51, §18]. The case
for & is similar, following [51, §7]. Let (X,w) be as above. Then we have an orthogonal
decomposition W1 @ Ws. Denote r = dim Wy > 1. We define a closed subvariety = of
U(W) x W consisting of (Y, u) such that u, Yu, ..., Y™ lu span Wa. In particular, a semisimple

x = (X,w) belongs to Z. In [51, §18] Rallis and Schiffmann have defined an isomorphism of
varieties
(B.2) 11 2o (W) x W) x (W) x Wa),s

whose inverse is defined as follows. According to the decomposition W7 @ Ws we may write

Y as
(Yu Y12)
Yor Yoo )

Then Yi2 € Hom (W, W). Define v/ = Y15Y""'u € Wy. Then ¢ maps (Y, u) to ((Yi1, '), (Yag, u)).
It is then easy to see that Yiu = Yiu € Wy for i = 0,1,...,r — 1. Therefore (Xag,u) is a
regular semisimple element. It is not hard to see that this defines an isomorphism. Moreover

it is equivariant under the action of U(W7) x U(W3): on the left hand side the action is the
restriction of that of U(W) to the subgroup; on the right hand side the action is the product

of the action of the two unitary groups U(W;) on U(W;) x W;. Then the morphism ¢ induces
a morphism between the categorical quotients

L’i S (U(W) x W) JU(Wy) x (M(Wa) x Wa),s JU(Wa) — (UMW) x W) JU(W).

Similarly, we have morphisms still denoted by ¢; and Lﬁ in the general linear case &. And we
have an equivalent version for the restriction of the adjoint action of GL,4+1,r on gl,41 F to
GL,, r. We describe the analogous construction for this. Let = € gl,41,7 be semisimple given
by (B.1) and denote by r = dim Uy = dim V5. Without loss of generality, we may assume
Us = F" embedded into F™ by sending u to (0,...,0,u). Similarly for V5, Uy, V7. Then we
define a closed subvariety = consisting of

(B3 = (0 )

65



such that «/, Y/, ..., Y™ span Us and v',0'Y,...,v'Y"™ span V5. Then similarly we have an
isomorphism ([51, §7]):

(B.4) (@l X F"" X Fpyy) x (gl p X F' X Fp)pg X FF — =

such that :~! maps y to ((Y11, YngQTQ_lu, UYZTQ_lYgl), (Ya2,u,v),d). It also induces a morphism
still denoted by

(gl X F* % Fy ) )GLy—p % (gl X F7 % Fp)pg)GLy X F — gl 1/GLy.

Lemma B.1. The morphism Lﬁ is étale for both gl,41 (equivalently, Sp41) and (W) x W.

Proof. We will use the coordinates described earlier for these categorical quotients involved in

the morphism L%. By Jacobian criterion for étaleness, it suffices to show that the Jacobian of

L% is non-zero everywhere. Indeed we will show the Jacobian is a non-zero constant. Therefore

it suffices to compute the Jacbobian over the algebraic closure. In particular, it suffices to

consider the equivalent question for the GL,, p-action on gl,1 7. Note that the Jacobian is a

regular function on the source of the morphism L%. It is then enough to show that it is a non-

zero constant on a Zariski open subset. Recall that by Lemma 3.1, the categorical quotient
g[nJrl,F/GLn,F is given by

SpeC(F[a17 <oy O 1, ﬁlaﬁQa 7&71])3

where the invariants are defined by (3.4)
a;=tr Atx, Bj=exle*, zeglyip

Another choice of invariants is given by (3.4) so that we may also identify the categorical
quotient gl,41,7/GLy, F as

Spec(F[a], ..., d, By, ..., BL]),

where
! 7 /I 7—1
a; =tr A" X, Bj=vX""u,

where z is as in (B.1). In particular, the Jacobian of the isomorphism
@Z} = ¢n : SpeC(F[O/l? RS a;u da Bia (XX} 5%]) - SpeC(F[Oéb ooy At 1, ﬂla B27 ) /Bn])

is a nonzero constant

a(alv ooy O 1, 5175% ceey ﬁn)
oo, ...,ad,d, By, ..., B))

To indicate the dependence on n we will write the invariants as «;(n), 8j(n) etc..

(B.5) = kn € F*.
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We choose an auxiliary open subvariety of gl,11 consisting of strongly reqular elements in

the sense of Jacquet—Rallis [39]. More precisely they are in the GL,, g-orbits of elements of
the form
al 1
Cc1 a9 1
T =(A1y ey Apy1,Cly ey C) 1= , a;€F,cje F*.

Cn—1 On 1
Cn  An+1

All such z’s with a,4+1 = 0 form a locally closed subvariety denoted by ©,, of gl,+1, 7. Note
that dim®,, = 2n. For d € F, let §,(d) be the matrix with only non-zero entry d at the
position (n + 1,n + 1). For (z,d) € ©,, x F, taking invariants oy, §; of x + ,(d) yields a
morphism with Zariski dense image:

5 = fn : @n X F— SpeC(F[ala "')an-i-luBl?/B?) 7/871])
Then we claim that the Jacobian of &, is given by

8(&1, veey Qi d, 51, ,,Bn)
o(ar, ooy an + 1,¢1..05¢5)

— (=)D 2k ko kpeacd ..

(B.6)

We prove (B.6) by induction on n. It is easy to very this for n = 1. Now for n > 1, we
may write &, = &}, o ¢y,. As d = ap+1, we have

(A, oyl d, B, B) O, eyl B, ey Bh)

a(ab <oy An41,C1e-y Cn) 6(@1, ey Qny,y C1---,Cn)

Note that of(n) = aj(n — 1) and for z € ©,, ] (n)(z) = ¢, and
Bi(n)(z) = cnfjm1(n — 1)(X), j=2,
since (0, ...,0,¢,) = cpe,. Here X is as in (B.1). This gives us

oo, .,al, By, Bh) 0, a0, 81, Bl 1)

(A1 eeey Ay C1evey Cpy) (a1, .eey Ay Cevey Cp—1)

which is equal to

no10(a1(n—1),..,an(n—1),61(n —1),...; Bp—1(n — 1))

-1 n—lc
(=1) " (a1, ey Apy C1evey Cp—1)

By induction hypothesis, the Jacobian of £/, is:

(—1)n(n71)/2ﬁ,1ﬁ}2...Iin_]_CQCg...Czil.

Together with the Jacobian of v, (B.5), we have proved (B.6).
Now we return to the morphism ¢j. We have an obvious isomorphism

¢:0,_»x0O,xF—>0,xF,
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which sends the triple
(.’L’(al, -y Qn—r, 07 Cly -y CTL—T‘)7 m(an—r—i-l? -y Qs 07 Cn—r+1y - Cn)7 d)
, .
£0 (A1 ooy Apg 1y Cly ooy Chy oy Ci—p 1y ooy Cn) With
T
/
an+1 = d, Cn—r = Cn—r H Cn—r+i-
i=1

We have the product
En—rp : On—yp X Op X F' = (gly—p x F"" x F,_;.) JGLy— x (gl x F" x F}.);s/GL, x F.

It is to easy to see that the following diagram commutes:

@n—rX@rXF @TLXF

ifnr,r lfn

(gly—r X F*" X Fy ) )GLp—y % (gly X F" X F}.)ps/GL, x F — gl,41/GL,

Then the Jacobian of L’i restricted to the image of &,_,, is equal to the ratio of the Jacobian
of &, over the product of that of &,_,, and ¢. By (B.6), we obtain this ratio is a non-zero
constant times

Cocy...c™

2 r A\n—r—1 2 r—1 r ]
0203--~(0n—r Hizl Cn—r+z)n T Cp—rt2Cy g Cn Hizl Cn—r+i

1
=1

This shows that the Jacobian of L‘i is a non-zero constant on a Zariski dense subset and hence

itself a non-zero constant on the source of Lq. This completes the proof that Lii is étale. ]

The construction of étale Luna slices. We now refine the morphism ¢; defined by (B.2)
and (B.4). We consider the semisimple element x = (X, w) in the unitary case. Then X;; is
semisimple in the usual sense. Therefore we may consider the Lie algebra L(W;)x,, of the
stabilizer U(W1)x,, and an open subvariety U(W1)y, of 4(W1)x,, consisting of those ¥ such
that (cf. [10, 14.5])

(B.7) det(ad(Y); t(W1)/U(W1)x,,) # 0.

To simplify notations, for (V') we denote

(B.8) V=UW)xW, Vy=UWi)x,, x W) x (UWz) x W),
and
(B.9) H=UW), Hi=UW;), H,=UWi)x,,
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where the last group is isomorphic to the stabilizer of z. Set
(B.lO) V; = (u(Wl)fXH X Wl) X (u(Wg) X WQ)TS.

Then = € V.. Let 13 be the restriction of ¢; to V.. Then the morphism ¢y is H,-equivariant
and it induces a morphism

(B.11) V. JH, x Hy —» V/H.

Note that the morphism ¢ also induces a morphism

(B.12) vi H X, x Hy) V. -V

by sending (h,x) to h - t2(x). Similar construction applies to gl,,+1 (equivalently, &).
Lemma B.2. The morphism Lg is étale for both gl,41 (equivalently, &) and U(V).

Proof. By Lemma, it suffices to show that the morphism
(UW)x,, x W) JU(W1)x,, — (W) x Wh) /U (Wh)

is étale. It is not hard to show that the Jacobian of this morphism at the image of (Y,u) €
U(W1)'y,, x Wy is given by, up to a sign:

det(ad(Y"); U(W7)/HW1) x,,)-
This is non-zero by the definition of U(WW7)'y, . O
Lemma B.3. The morphism ¢ is étale.

Proof. We show this in the unitary case. It suffices to show that the differential dv at (1,y)
induces an isomorphism between the tangent spaces. We first assume that Xi; is a scaler.
Then H, = H;. Suppose y = (Y,u) € V,. Then it is not hard to see that we have for
AY = diag(AYH, A}/QQ)’ Au = (Aul, AUQ),

(Y + AY, u+ Au) = (Y, u) + Awa(Y, u) + higher terms,

where
Aw(Y,u) := (AYH i@g;) )

9

where the part “ --” is determined by the Hermitian condition, and ¢a,, € Hom(Wa, W) is
the homomorphism that sends Yj,us to 0 for i = 0,1,...,r — 2 and Y2T2_1u2 to Aug.
Then the differential dv at (1,y) is given by

de : ﬂ(W) Xu(Wl)Xll x$U(W2) Vz -V
(AX, (AK Au)) — ([AX, diag(YH, YQQ)] + ALQ(Y, u), Aug + AX - u2).
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Here the left hand side means the quotient of (U(W) x V,)/U(W1)x,, x U(W2). By comparing
the dimension, it suffices to show that dv is injective. Suppose that di(AX, (AY, Au)) = 0.
By the action of (U(W) x V,)/U(W1)x,, x U(W2), we may assume that

AX = <O z) ,¢EHOH1E(W2,W1).

Then we need to show that ¢ = 0 and (AY, Au) = 0. From the diagonal blocks, it is easy to
see that AY = 0. Note that now we have AX -uy = ¢(ug) € Wi. Therefore Aug+AX -uy =0
implies that both Aug = 0 and ¢(uz2) = 0. Now we use the condition from the off-diagonal
block to obtain

Y190 — Yoo + ¢Au1 =0¢€e HOHIE(WQ, Wl).

Since (Yag, ug) is regular semisimple, the vectors ug, Yoous, ..., Y{{luQ form a basis of Wy. We
apply the above homomorphism to YQ/L'QUQ:

Yo L ug = Y110Yohus + daw, Yasua.

Since ¢uy = 0, we may show that ¢Y212+ Yuy = 0 recursively. This shows that ¢ = 0 €
Hom (W5, W7). This completes the proof when Xi; is a scalar.

Now we consider a general semisimple X171, and H, ~ U(W1)x,,. Then the assertion
follows if we show that the following analogous morphism is étale

H1 X Hy (M(Wl),XH X Wl) i ﬂ(Wl) X Wl.
Similar argument to the above works and we omit the details. O

Lemma B.4. For both gl,+1,F (equivalently, &) and (V') the following diagram is cartisian

H X (11, % 11) Vi * v

|

Vo (Hy x Hz) . V/H.

Proof. Thanks to the previous lemmas, now the proof is similar to that of [10, Lemma 14.1].
We need to show that the induced morphism

v H X(HIXHQ) Va/c i V;//(Hm X HQ) XV/HV

is an isomorphism. It suffices to show that in an algebraic closure the induced map on the
geometric points is bijective. From this we see that the question becomes equivalent for both
glht1 (equivalently, &) and LU(W). To simplify exposition, we consider the unitary case.
Actually the bijectivity holds for any field as we now show. To show the surjectivity, we
may write an element V; /(Hy x Ha) xy gV as ((Y',u'), (Y,u)) where (Y',u) € V; is abused to
denote its image in the quotient. Then Lg (Y u') = w(Y,u). This implies that the fundamental
matrix of u, Yu, ..., Y™ lu is equal to that of ul, Yyyub, ...,Yég_lug, which is non-degenerate.
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By Witt’s theorem there exists an h € H such that h(Yééu’Q) = Y'u for 0 <i<r—1. We may
thus assume that u = uj, Yoo = Yj5. The rest follows from [10, Lemma 14.1].
To show the injectivity, without loss of generality it suffices to show that if

v(1,y) = v(h, 2),

then h € H, x Hy and y = hz. It suffices to show h € H, x Hs since the second assertion follows
from this. Denote y = (Y,u) and z = (Z,w). Then h obviously preserves the subspace W,
and hence W7, too. It follows that h € Hy x Hy. The rest follows from [0, Lemma 14.1]. O

Theorem B.5. Let x € V be a semisimple element and we use the notations from (B.8) to
(B.10). Choose an étale Luna slice Zy of (Xaa,w) (which is Ha-reqular semisimple) for the
action of Hy on W(Ws) x Wo. Then the image of (M(WI)'XH X Wl) X Zo under 1o defines an

étale Luna slice at x.

Proof. The space V,, in (B.8) is (isomorphic to) the sliced representation at x. Then the result
follows from Lemma B.3 and Lemma B.4. O

Remark 17. One may make the étale slice for a regular semisimple element more explicit by
using the explicit section of the categorical quotient in Lemma 3.1.

Remark 18. Obviously, this also gives us a way to choose an analytic Luna slice once we choose
an analytic Luna slice for the Hy-regular semisimple element (Xa9,w).
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